āϏāĻžāϧāĻžāϰāĻŖ āϧāĻžāϰāĻŖāĻžÂ 

 

  • āϏ⧇āϟ āĻšāĻšā§āϛ⧇ āϏ⧁āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟāĻ­āĻžāĻŦ⧇ āϏāĻ‚āĻœā§āĻžāĻžā§ŸāĻŋāϤ āĻŦāĻ¸ā§āϤ⧁āϏāĻŽā§‚āĻšā§‡āϰ āϏāĻŽāĻžāĻšāĻžāϰ āĻŦāĻž āϤāĻžāϞāĻŋāĻ•āĻž āĨ¤ āϏ⧇āĻŸā§‡āϰ āĻ…āĻ¨ā§āϤāĻ°ā§āĻ—āϤ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ• āĻŦāĻ¸ā§āϤ⧁āϕ⧇ āϐ āϏ⧇āĻŸā§‡ āωāĻĒāĻžāĻĻāĻžāύ (element) āĻŦāĻž āϏāĻĻāĻ¸ā§āϝ (member) āĻŦāϞāĻž āĻšā§Ÿ āĨ¤
  • āϏāĻžāϧāĻžāϰāĻŖāϤ āϏ⧇āϟ āĻĻ⧁āχ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ :
  1. āϤāĻžāϞāĻŋāĻ•āĻž āĻĒāĻĻā§āϧāϤāĻŋ (Tabular Method) : āϝ⧇āĻŽāύ A = {1,2,3,4,5}
  2. āϏ⧇āϟ āĻ—āĻ āύ āĻĒāĻĻā§āϧāϤāĻŋ (Set Builder Method) : āϝ⧇āĻŽāύ B = {x âˆŖ x ∈  N āĻāĻŦāĻ‚ x ≤ 5}
  • āϏāĻŽāĻžāύ āϏ⧇āϟ : āϝ⧇āϕ⧋āύ⧋ āϏ⧇āϟ A=B āĻšāĻŦ⧇ āϝāĻĻāĻŋ A āϏ⧇āĻŸā§‡āϰ āϏāĻ•āϞ āϏāĻĻāĻ¸ā§āϝ B āϏ⧇āĻŸā§‡āϰ āϏāĻĻāĻ¸ā§āϝ āĻšā§Ÿ āĻāĻŦāĻ‚ B āϏ⧇āĻŸā§‡āϰ āϏāĻ•āϞ āϏāĻĻāĻ¸ā§āϝ A āϏ⧇āĻŸā§‡āϰ āϏāĻĻāĻ¸ā§āϝ āĻšā§Ÿ āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž,

A=B āĻšāĻŦ⧇ āϝāĻĻāĻŋ āĻāĻŦāĻ‚ āϕ⧇āĻŦāϞ āϝāĻĻāĻŋ āĻšāϞ⧇ x ∈  B āĻšā§Ÿ āĻāĻŦāĻ‚ x ∈  B āĻšāϞ⧇ x ∈ A āĻšā§Ÿ āĨ¤

  • āĻĢāĻžāρāĻ•āĻž āϏ⧇āϟ/ āĻļā§‚āĻ¨ā§āϝ āϏ⧇āϟ : āϝ⧇ āϏ⧇āĻŸā§‡āϰ āϕ⧋āύ⧋ āϏāĻĻāĻ¸ā§āϝ āύ⧇āχ āϤāĻžāϕ⧇ āĻĢāĻžāρāĻ•āĻž āĻŦāĻž āĻļā§‚āĻ¨ā§āϝ (Empty) āϏ⧇āϟ āĻŦāϞāĻž āĻšā§Ÿ āĨ¤ āĻļā§‚āĻ¨ā§āϝ āϏ⧇āϟāϕ⧇ $\Phi \phi \phi \Phi \phi$ āϏāĻ‚āϕ⧇āϤ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤
  • āωāĻĒāϏ⧇āϟ : āϝāĻĻāĻŋ A āϏ⧇āĻŸā§‡āϰ āĻĒā§āϰāϤāĻŋāϟāĻŋ āωāĻĒāĻžāĻĻāĻžāύ B āϏ⧇āĻŸā§‡āϰāĻ“ āωāĻĒāĻžāĻĻāĻžāύ āĻšā§Ÿ āϤāĻŦ⧇ A āϕ⧇ āϏ⧇āĻŸā§‡āϰ B āωāĻĒāϏ⧇āϟ (Subset) āĻŦāϞāĻž āĻšā§Ÿ āĨ¤ āĻāĻŦāĻ‚ A ⊂ B āϞāĻŋāϖ⧇ āϤāĻž āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āωāĻĒāϏ⧇āϟ āĻŦā§‹āĻāĻžāϤ⧇ ⊆ āϚāĻŋāĻšā§āύāĻ“ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ A ⊆ B āĻšā§Ÿ āϝāĻĻāĻŋ āĻ“ āϕ⧇āĻŦāϞ āϝāĻĻāĻŋ x ∈ A āĻšāϞ⧇ x ∈ B āĻšā§Ÿ āĨ¤ āϕ⧋āύ⧋ āϏ⧇āĻŸā§‡āϰ āϏāĻĻāĻ¸ā§āϝ āϏāĻ‚āĻ–ā§āϝāĻž n āĻšāϞ⧇ āϐ āϏ⧇āĻŸā§‡āϰ āϜāĻ¨ā§āϝ 2n āϏāĻ‚āĻ–ā§āϝāĻ• āωāĻĒāϏ⧇āϟ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āĨ¤
  • āĻĒā§āϰāĻ•ā§ƒāϤ āωāĻĒāϏ⧇āϟ : āϏ⧇āϟ A āϕ⧇ B āĻāϰ āĻĒā§āϰāĻ•ā§ƒāϤ āωāĻĒāϏ⧇āϟ (Proper Subset) āĻŦāϞāĻž āĻšā§Ÿ āϝāĻĻāĻŋ A ⊂ B āĻāĻŦāĻ‚ A ≠ B āĻšā§Ÿ āĨ¤ A, B āĻāϰ āĻĒā§āϰāĻ•ā§ƒāϤ āωāĻĒāϏ⧇āϟ āĻŦā§‹āĻāĻžāϤ⧇ A ⊊ B āϞ⧇āĻ–āĻž āĻšā§Ÿ āĨ¤ āϕ⧋āύ āϏ⧇āĻŸā§‡āϰ āϏāĻĻāĻ¸ā§āϝ āϏāĻ‚āĻ–ā§āϝāĻž n āĻšāϞ⧇ āϐ āϏ⧇āĻŸā§‡āϰ āϜāĻ¨ā§āϝ (2n-1) āϏāĻ‚āĻ–ā§āϝāĻ• āĻĒā§āϰāĻ•ā§ƒāϤ āωāĻĒāϏ⧇āϟ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžāĻŦ⧇ āĨ¤
  • āĻļāĻ•ā§āϤāĻŋ āϏ⧇āϟ : āϕ⧋āύ⧋ āϏ⧇āĻŸā§‡āϰ āωāĻĒāϏ⧇āϟāϏāĻŽā§‚āĻšā§‡āϰ āϏ⧇āϟāϕ⧇ āϐ āϏ⧇āĻŸā§‡āϰ āĻļāĻ•ā§āϤāĻŋ āϏ⧇āϟ (Power set) āĻŦāϞ⧇ āĨ¤ āϕ⧋āύ āϏ⧇āϟ A āĻāϰ āĻĒāĻžāĻ“ā§ŸāĻžāϰ āϏ⧇āϟāϕ⧇ P(A) āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤
  • āϏāĻžāĻ°ā§āĻŦāĻŋāĻ• āϏ⧇āϟ : āφāϞ⧋āϚāύāĻžāϧ⧀āύ āϏāĻ•āϞ āϏ⧇āϟāϕ⧇ āϤāĻĨāĻž āϤāĻžāĻĻ⧇āϰ āωāĻĒāĻžāĻĻāĻžāύāϏāĻŽā§‚āĻšāϕ⧇ āĻāĻ•āϟāĻŋ āĻŦāĻŋāĻļ⧇āώ āϏ⧇āĻŸā§‡āϰ āĻ…āĻ¨ā§āϤāĻ°ā§āĻ­ā§‚āĻ•ā§āϤ āĻŦāĻŋāĻŦ⧇āϚāύāĻž āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āϏ⧇āχ āĻŦāĻŋāĻļ⧇āώ āϏ⧇āϟāϕ⧇ āϐ āφāϞ⧋āϚāύāĻžāϰ āϏāĻžāĻ°ā§āĻŦāĻŋāĻ• āϏ⧇āϟ (Universal Set) āĻŦāϞāĻž āĻšā§Ÿ āĻāĻŦāĻ‚ āϏāĻžāϧāĻžāϰāĻŖāϤ ⋃ āĻĒā§āϰāϤ⧀āϕ⧇āϰ āϏāĻžāĻšāĻžāĻ¯ā§āϝ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤
  • āĻŦā§āϝāĻŦāϧāĻŋ : a āĻ“ b āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻž āĻāĻŦāĻ‚ a<b āĻšāϞ⧇ āĻāϰ āϚāĻžāϰāϟāĻŋ āĻŦāĻŋāĻļ⧇āώ āϧāϰāύ⧇āϰ āωāĻĒāϏ⧇āϟāϕ⧇ a āĻ“ b āĻĒā§āϰāĻžāĻ¨ā§āϤāĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āĻŦā§āϝāĻŦāϧāĻŋ (Interval) āĻŦāϞāĻž āĻšā§Ÿ āĨ¤ āĻĻā§āϰāĻˇā§āϟāĻŦā§āϝ, āϏāĻ•āϞ āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϏ⧇āϟāϕ⧇ R āĻĻā§āĻŦāĻžāϰāĻž āϏ⧂āϚāĻŋāϤ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤
  1. a āĻĨ⧇āϕ⧇ b āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ–ā§‹āϞāĻž (Open) āĻŦā§āϝāĻŦāϧāĻŋ : ]a,b[ = (a,b) = {xâˆŖx ∈ R āĻāĻŦāĻ‚ a<x<b}
  2. a āĻĨ⧇āϕ⧇ b āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŦāĻĻā§āϧ (Closed) āĻŦā§āϝāĻŦāϧāĻŋ : [a,b] = {xâˆŖx ∈ R āĻāĻŦāĻ‚ a≤x≤b}
  3. a āĻĨ⧇āϕ⧇ b āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ–ā§‹āϞāĻž-āĻŦāĻĻā§āϧ āĻŦā§āϝāĻŦāϧāĻŋ : [a,b] = (a,b] = {xâˆŖx ∈ R āĻāĻŦāĻ‚ a<x≤b}
  4. a āĻĨ⧇āϕ⧇ b āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŦāĻĻā§āϧ-āĻ–ā§‹āϞāĻž āĻŦā§āϝāĻŦāϧāĻŋ : [a,b[ = [a,b) = {xâˆŖx ∈ R āĻāĻŦāĻ‚ a≤x<b}
  • āϏāĻ‚āϝ⧋āĻ— āϏ⧇āϟ : āĻĻ⧁āϟāĻŋ āϏ⧇āϟ A āĻāĻŦāĻ‚ B āĻāϰ āϏāĻ•āϞ āωāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§Ÿā§‡ (āϕ⧋āύ⧋ āωāĻĒāĻžāĻĻāĻžāύ⧇āϰ āĻĒ⧁āύāϰāĻžāĻŦ⧃āĻ¤ā§āϤāĻŋ āύāĻž āĻ•āϰ⧇) āĻ—āĻ āĻŋāϤ āϏ⧇āϟāϕ⧇ A āĻāĻŦāĻ‚ B āĻāϰ āϏāĻ‚āϝ⧋āĻ— āϏ⧇āϟ āĻŦāϞāĻž āĻšā§Ÿ āĨ¤ āϝāĻž A⋃B āĻĒā§āϰāϤ⧀āϕ⧇āϰ āĻŽāĻžāĻ§ā§āϝāĻŽā§‡ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž,

A⋃B = {x âˆŖ x ∈ āĻ…āĻĨāĻŦāĻžÂ  x ∈ b}

āĻĻā§āϰāĻˇā§āϟāĻŦā§āϝ, x ∉ A⋃B āĻšā§Ÿ āϝāĻĻāĻŋ āĻ“ āϕ⧇āĻŦāϞ āϝāĻĻāĻŋ x ∉ A āĻāĻŦāĻ‚ X ∉ B āĻšā§Ÿ āĨ¤

āϏāĻ‚āĻœā§āĻžāĻž āĻĨ⧇āϕ⧇ āĻāϟāĻž āĻ¸ā§āĻĒāĻˇā§āϟ āϝ⧇, i. A⋃B = B⋃A [āĻŦāĻŋāύāĻŋāĻŽā§Ÿ āĻŦāĻŋāϧāĻŋ]

                                      ii. A ⊆ A⋃B āĻāĻŦāĻ‚ B ⊆ A⋃B                          

  • āϛ⧇āĻĻ āϏ⧇āϟ : āĻĻ⧁āϟāĻŋ āϏ⧇āϟ A āĻāĻŦāĻ‚ B āĻāϰ āϏāĻ•āϞ āϏāĻžāϧāĻžāϰāĻŖ (Common) āωāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§Ÿā§‡ āĻ—āĻ āĻŋāϤ āϏ⧇āϟāϕ⧇ A āĻāĻŦāĻ‚ B āĻāϰ āϛ⧇āĻĻ āϏ⧇āϟ āĻŦāϞāĻž āĻšā§Ÿ āĨ¤ āϝāĻž A⋂B āϞāĻŋāϖ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž

A⋂B = {x âˆŖ x ∈ A āĻāĻŦāĻ‚ x ∈ B}

āĻĻā§āϰāĻˇā§āϟāĻŦā§āϝ, x ∉ A⋂B āĻšā§Ÿ āϝāĻĻāĻŋ āĻ“ āϕ⧇āĻŦāϞ āϝāĻĻāĻŋ x ∉ A āĻ…āĻĨāĻŦāĻž x ∉ B

āϏāĻ‚āĻœā§āĻžāĻž āĻĨ⧇āϕ⧇ āĻāϟāĻž āĻ¸ā§āĻĒāĻˇā§āϟ āϝ⧇, i. AB = BA [āĻŦāĻŋāύāĻŋāĻŽā§Ÿ āĻŦāĻŋāϧāĻŋ]

  ii. A⋂B ⊂ A āĻāĻŦāĻ‚ A⋂B ⊂ B

  • āύāĻŋāĻļā§āϛ⧇āĻĻ āϏ⧇āϟ : āĻĻ⧁āϟāĻŋ āϏ⧇āϟ A āĻāĻŦāĻ‚ B āύāĻŋāĻļā§āϛ⧇āĻĻ āϏ⧇āϟ āĻŦāĻž āϏāĻ‚āĻ•ā§āώ⧇āĻĒ⧇ āύāĻŋāĻļā§āϛ⧇āĻĻ āĻŦāϞāĻž āĻšā§Ÿ āϝāĻĻāĻŋ A āĻāĻŦāĻ‚ B āĻāϰ āĻŽāĻ§ā§āϝ⧇ āϕ⧋āύ⧋ āϏāĻžāϧāĻžāϰāĻŖ āωāĻĒāĻžāĻĻāĻžāύ āĻŦāĻŋāĻĻā§āϝāĻŽāĻžāύ āύāĻž āĻĨāĻžāϕ⧇ āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž, A⋂B = Ī• āϝāĻĻāĻŋ āĻšā§Ÿ āĨ¤
  • āĻ…āĻ¨ā§āϤāϰ āϏ⧇āϟ : A āĻāĻŦāĻ‚ B āĻĻ⧁āϟāĻŋ āϏ⧇āϟ āĻšāϞ⧇, āϝ⧇ āϏāĻŽāĻ¸ā§āϤ āωāĻĒāĻžāĻĻāĻžāύ A āϏ⧇āĻŸā§‡ āφāϛ⧇ āĻ•āĻŋāĻ¨ā§āϤ⧁ B āϏ⧇āĻŸā§‡ āύ⧇āχ, āĻāϰ⧂āĻĒ āωāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§Ÿā§‡ āĻ—āĻ āĻŋāϤ āϏ⧇āϟāϕ⧇ A āĻāĻŦāĻ‚ B āĻāϰ āĻ…āĻ¨ā§āϤāϰ āϏ⧇āϟ (Differecne Set) āĻŦāϞ⧇ āĨ¤ A āĻāĻŦāĻ‚ B āĻāϰ āĻ…āĻ¨ā§āϤāϰ āϏ⧇āϟāϕ⧇ A-B āĻŦāĻž A\B āύāĻŋā§Ÿā§‡ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āĻāĻ•āχāĻ­āĻžāĻŦ⧇, B āϏ⧇āĻŸā§‡ āφāϛ⧇ āĻ•āĻŋāĻ¨ā§āϤ⧁ A āϏ⧇āĻŸā§‡ āύ⧇āχ āĻāϰ⧂āĻĒ āωāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§Ÿā§‡ āĻ—āĻ āĻŋāϤ āϏ⧇āϟāϕ⧇ B āĻāĻŦāĻ‚ A āĻāϰ āĻ…āĻ¨ā§āϤāϰ āϏ⧇āϟ āĻŦāϞ⧇ āĨ¤ B āĻāĻŦāĻ‚ A āĻāϰ āĻ…āĻ¨ā§āϤāϰ āϏ⧇āϟāϕ⧇ B-A āĻŦāĻž B\A āϞāĻŋāϖ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤

A-B = A\B = {X âˆŖ X ∈ A āĻāĻŦāĻ‚ X ∉ B}

B-A = B\A = {X âˆŖ X ∈ B āĻāĻŦāĻ‚ X ∉ A}

āĻĻā§āϰāĻˇā§āϟāĻŦā§āϝ : i. A-B ⊂ A

            ii. B-A ⊂ B

  • āĻĒā§‚āϰāĻ• āϏ⧇āϟ : āϕ⧋āύ⧋ āϏ⧇āĻŸā§‡āϰ āωāĻĒāĻžāĻĻāĻžāύāϗ⧁āϞ⧋āϕ⧇ āĻŦāĻžāĻĻ āĻĻāĻŋā§Ÿā§‡ āϏāĻžāĻ°ā§āĻŦāĻŋāĻ• āϏ⧇āĻŸā§‡āϰ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āϏāĻŽāĻ¸ā§āϤ āωāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§Ÿā§‡ āĻ—āĻ āĻŋāϤ āϏ⧇āϟāϕ⧇ āωāĻ•ā§āϤ āϏ⧇āĻŸā§‡āϰ āĻĒā§‚āϰāĻ• āϏ⧇āϟ āĻŦāϞ⧇ āĨ¤ A āϕ⧋āύ āϏ⧇āϟ āĻšāϞ⧇ A āĻāϰ āĻĒā§‚āϰāĻ• (Complement) āϏ⧇āϟāϕ⧇ A′ āĻĒā§āϰāϤ⧀āĻ• āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž,

A′ = U-A = {X âˆŖ X ∈ U āĻāĻŦāĻ‚ X ∉ A}

  • āĻ•ā§āϰāĻŽāĻœā§‹ā§œ : āĻĻ⧁āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ•ā§āϰāĻŽāĻœā§‹ā§œā§‡ (Ordered Pair) āĻāĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻĒā§āϰāĻĨāĻŽ āĻāĻŦāĻ‚ āĻ…āĻĒāϰāϟāĻŋāϕ⧇ āĻĻā§āĻŦāĻŋāĻ¤ā§€ā§Ÿ āωāĻĒāĻžāĻĻāĻžāύ āϧāϰāĻž āĻšā§Ÿ āĨ¤ (a,b) āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ•āϟāĻŋ āĻ•ā§āϰāĻŽāĻœā§‹ā§œ āύāĻŋāĻ°ā§āĻĻ⧇āĻļ āĻ•āϰāĻž āĻšā§Ÿ āϝāĻžāϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ a āĻāĻŦāĻ‚ āĻĻā§āĻŦāĻŋāĻ¤ā§€ā§Ÿ āĻĒāĻĻ b āĨ¤ āĻ•ā§āϰāĻŽāĻœā§‹ā§œ (a,b) āĻ“ (c,d) āϏāĻŽāĻžāύ āĻšā§Ÿ āĻ…āĻ°ā§āĻĨāĻžā§Ž, (a,b) = (c,d) āĻšā§Ÿ āϝāĻĻāĻŋ āĻ“ āϕ⧇āĻŦāϞ āϝāĻĻāĻŋ a=c āĻāĻŦāĻ‚ b=d āĻšā§Ÿ āĨ¤
  • āĻ•āĻžāĻ°ā§āϤ⧇āĻ¸ā§€ā§Ÿ āϗ⧁āĻŖāϜ āϏ⧇āϟ : āϝāĻĻāĻŋ A āĻāĻŦāĻ‚ B āĻĻ⧁āϟāĻŋ āϏ⧇āϟ āĻšā§Ÿ, āϤāĻŦ⧇ A āĻāϰ āωāĻĒāĻžāĻĻāĻžāύāϗ⧁āϞ⧋āϕ⧇ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ āĻ“ B āĻāϰ āωāĻĒāĻžāĻĻāĻžāύāϗ⧁āϞ⧋āϕ⧇ āĻĻā§āĻŦāĻŋāĻ¤ā§€ā§Ÿ āĻĒāĻĻ āϧāϰ⧇ āĻ—āĻ āĻŋāϤ āĻ•ā§āϰāĻŽāĻœā§‹ā§œā§‡āϰ āϏ⧇āϟāϕ⧇ A āĻāĻŦāĻ‚ B āĻāϰ āĻ•āĻžāĻ°ā§āϤ⧇āĻ¸ā§€ā§Ÿ āϗ⧁āĻŖāϜ (Cartesian Product) āϏ⧇āϟ āĻŦāϞ⧇ āĨ¤ āϝāĻž A×B āĻĒā§āϰāϤ⧀āĻ• āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž,

A×B = {(x,y) âˆŖ x ∈ A āĻāĻŦāĻ‚ y ∈ B}

A×B = {(x,y) âˆŖ x ∈ B āĻāĻŦāĻ‚ y ∈ A}

āĻāĻŦāĻ‚ āϏāĻžāϧāĻžāϰāĻŖāĻ­āĻžāĻŦ⧇, A×B ≠ B×A

āĻĻā§āϰāĻˇā§āϟāĻŦā§āϝ, A āϏ⧇āĻŸā§‡ p āϏāĻ‚āĻ–ā§āϝāĻ• āĻŦāĻ¸ā§āϤ⧁ āĻāĻŦāĻ‚ B āϏ⧇āĻŸā§‡ q āϏāĻ‚āĻ–ā§āϝāĻ• āĻŦāĻ¸ā§āϤ⧁ āĻĨāĻžāĻ•āϞ⧇ A×B āϏ⧇āĻŸā§‡ pq āϏāĻ‚āĻ–ā§āϝāĻ• āĻŦāĻ¸ā§āϤ⧁ āĻĨāĻžāĻ•āĻŦ⧇ āĨ¤

  • āϏ⧇āĻŸā§‡āϰ āϏāĻ‚āϝ⧋āĻ— āĻŦāĻŋāϧāĻŋ (Associative Law) : A,B,C āϝ⧇āϕ⧋āύ⧋ āϤāĻŋāύāϟāĻŋ āϏ⧇āϟ āĻšāϞ⧇,
  1. (A⋃B)⋃C = A⋃(B⋃C)
  2. (A⋂B)⋂C = A⋂(B⋂C)
  • āϏ⧇āĻŸā§‡āϰ āĻŦāĻŖā§āϟāύ āĻŦāĻŋāϧāĻŋ (Distributive Law) : A,B,C āϝ⧇āϕ⧋āύ⧋ āϤāĻŋāύāϟāĻŋ āϏ⧇āϟ āĻšāϞ⧇,
  1. A⋃(B⋂C) = (A⋃B)⋂(A⋃C)
  2. A⋂(B⋃C) = (A⋂B)⋃(A⋂C)
  • āĻ…āϭ⧇āĻĻāĻ• āĻŦāĻŋāϧāĻŋ (Identity Law) : A āϝ⧇āϕ⧋āύ⧋ āϏ⧇āϟ āĻāĻŦāĻ‚ U āϏāĻžāĻ°ā§āĻŦāĻŋāĻ• āϏ⧇āϟ āĻšāϞ⧇,
  1. Aâ‹ƒĪ• = A
  2. A⋂U = A
  3. A⋃U = U
  4. Aâ‹‚Ī• = Ī•
  • āĻĒā§‚āϰāĻ• āĻŦāĻŋāϧāĻŋ (Complement Law) : U āϏāĻžāĻ°ā§āĻŦāĻŋāĻ• āϏ⧇āϟ, A āϝ⧇āϕ⧋āύ⧋ āĻāĻ•āϟāĻŋ āϏ⧇āϟ āĻāĻŦāĻ‚ Ī• āĻĢāĻžāρāĻ•āĻž āϏ⧇āϟ āĻāĻŦāĻ‚ U′, A′ āĻāĻŦāĻ‚ Ī•â€˛ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ āϤāĻžāĻĻ⧇āϰ āĻĒā§‚āϰāĻ• āϏ⧇āϟ āĻšāϞ⧇,
  1. A⋃A′ = U
  2. A⋂A′ = Ī•
  3. (A′)′ = A
  4. U′ = Ī•
  5. Ī•â€˛ = U
  • āĻĻā§āϝ āĻŽāϰāĻ—āĻžāύ⧇āϰ āĻŦāĻŋāϧāĻŋ (De Morgan’s Law) : A,B āϝ⧇āĻ•āύ⧋ āĻĻ⧁āχāϟāĻŋ āϏ⧇āϟ āĻāĻŦāĻ‚ A′ āĻ“ B′ āϤāĻžāĻĻ⧇āϰ āĻĒā§‚āϰāĻ• āϏ⧇āϟ āĻšāϞ⧇,
  1. (A⋃B)′ = A′⋂B′
  2. (A⋂B)′ = A′⋃B′
  • A āϏāĻžāĻ¨ā§āϤ (finite) āϏ⧇āϟ āĻšāϞ⧇, A āĻāϰ āωāĻĒāĻžāĻĻāĻžāύ āϏāĻ‚āĻ–ā§āϝāĻž āφāĻŽāϰāĻž n(A) āĻĻāĻŋā§Ÿā§‡ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻŋ āĨ¤
  • A āĻāĻŦāĻ‚ B āĻĻ⧁āχāϟāĻŋ āϏāĻžāĻ¨ā§āϤ āϏ⧇āϟ āĻĢāϞ⧇ A⋃B āĻ“ āĻāĻ•āϟāĻŋ āϏāĻžāχ āϏ⧇āϟ āĨ¤ āϏ⧇āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇,

n(A⋃B) = n(A)+n(B)-N(A⋂B)

n((A⋃B)′) = n(S)-n(A⋃B)        [A āĻāĻŦāĻ‚ B āωāĻ­ā§Ÿā§‡ S āĻāϰ āωāĻĒāϏ⧇āϟ āĻšāϞ⧇]

                        = n(S)-n(A)-n(B)+n(A⋂B)

  • A,B,C āϏāĻžāχ āϏ⧇āϟ āĻĢāϞ⧇,

n(A⋃B⋃C) = n(A)+n(B)+n(C)-n(A⋂B)-n(B⋂C)-n(C⋂A)+n(A⋂B⋂C)

  • āϭ⧇āύāϚāĻŋāĻ¤ā§āϰ : āϕ⧋āύ⧋ āϏ⧇āĻŸā§‡āϰ āĻāĻ•āĻžāϧāĻŋāĻ• āωāĻĒāϏ⧇āĻŸā§‡āϰ āĻŽāĻ§ā§āϝ⧇ āϏāĻŽā§āĻĒāĻ°ā§āĻ• āύāĻŋāĻ°ā§āĻĻ⧇āĻļ āĻ•āϰāϤ⧇ āĻ…āύ⧇āĻ• āϏāĻŽā§Ÿ āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋāĻ• āϚāĻŋāĻ¤ā§āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āĻŦ⧃āϟāĻŋāĻļ āϤāĻ°ā§āĻ•āĻļāĻžāĻ¸ā§āĻ¤ā§āϰāĻŦāĻŋāĻĻ āϜāύ āϭ⧇āύ āĻĒā§āϰāĻĨāĻŽā§‡ āĻāϰ⧂āĻĒ āϚāĻŋāĻ¤ā§āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇āύ āĻŦāϞ⧇ āϤāĻžāϰ āύāĻžāĻŽāĻžāύ⧁āϏāĻžāϰ⧇ āĻāϗ⧁āϞ⧋āϕ⧇ āϭ⧇āύāϚāĻŋāĻ¤ā§āϰ (Venn Diagram) āĻŦāϞāĻž āĻšā§Ÿ āĨ¤ āϭ⧇āύāϚāĻŋāĻ¤ā§āϰ⧇ āϏāĻžāĻ°ā§āĻŦāĻŋāĻ• āϏ⧇āϟāϕ⧇ āϏāĻžāϧāĻžāϰāĻŖāϤ āĻ†ā§ŸāϤāĻ•ā§āώ⧇āĻ¤ā§āϰ āĻāĻŦāĻ‚ āϏāĻ‚āĻļā§āϞāĻŋāĻˇā§āϟ āϏ⧇āϟāϗ⧁āϞ⧋āϕ⧇ āĻŦ⧃āĻ¤ā§āϤ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āύāĻŋāĻŽā§āύ⧇ āĻ•ā§Ÿā§‡āĻ•āϟāĻŋ āϭ⧇āύāϚāĻŋāĻ¤ā§āϰ āĻĻ⧇āĻ–āĻžāύ⧋ āĻšāϞ :

āĻ—āĻžā§ āĻ…āĻ‚āĻļāϟ⧁āϕ⧁ A⋃B

āĻ—āĻžā§ āĻ…āĻ‚āĻļāϟ⧁āϕ⧁ A⋂B

āĻ—āĻžā§ āĻ…āĻ‚āĻļāϟ⧁āϕ⧁ (A⋃B)′

āĻ—āĻžā§ āĻ…āĻ‚āĻļāϟ⧁āϕ⧁ A\B

āĻ—āĻžā§ āĻ…āĻ‚āĻļāϟ⧁āϕ⧁ A′

 

āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻžāϰ āϏāĻŽāĻžāϧāĻžāĻ¨Â 

1. āϝāĻĻāĻŋ U = {1,2,3,4,5,6,7,8,9}, A = {2,3,4,5}, B = {4,6,8}, C = {3,4,5,6,7} āĻšā§Ÿ āϤāĻŦ⧇,

i. A⋃B

ii. B⋃C

iii. A⋃C

iv. A⋃(B⋃C)

v. (A⋃B)⋃C

vi. A⋂B

vii. B⋂C

viii. A⋂C

ix. (A⋂B)⋂C

x. A⋂(B⋂C)

xi. A′

xii. A\B

xiii. (A\B)′

xiv. (A⋃B)′

xv. (A⋂B)′

xvi. A⋂B′

xvii. B′-A′ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ

 

i. A⋃B = {x âˆŖ x ∈ A āĻ…āĻĨāĻŦāĻž x ∈ B} = {2,3,4,5,6,8}

ii. B⋃C = {3,4,5,6,7,8}

iii. A⋃C = {2,3,4,5,6,7}

iv. A U(B⋃C) = {x âˆŖ x ∈ A āĻ…āĻĨāĻŦāĻž x ∈ (B⋃C)} = {2,3,4,5,6,7,8}

v. (A⋃B)⋃C = {x âˆŖ x ∈ (A⋃B) āĻ…āĻĨāĻŦāĻž x ∈ C} = {2,3,4,5,6,7,8}

vi. A⋂B = {x âˆŖ x ∈ A āĻ…āĻĨāĻŦāĻž x ∈ B} = {4}

vii. B⋂C = {4,6}

viii. A⋂C = {3,4,5}

ix. (A⋂B)⋂C = {x âˆŖ x ∈ (A⋂B) āĻ…āĻĨāĻŦāĻž x ∈ C} = {4}

x. A⋂(B⋂C) = {x âˆŖ x ∈ A āĻ…āĻĨāĻŦāĻž x ∈ (B⋂C)} = {4}

xi. A′ = U-A = {x âˆŖ x ∈ U āĻ…āĻĨāĻŦāĻž x ∉ A} = {1,6,7,8,9}

xii. A-B = {x âˆŖ x ∈ A āĻ…āĻĨāĻŦāĻž x ∉ B} = {2,3,5}

xiii. (A\B)′ = U-(A-B) = {x âˆŖ x ∈ U āĻ…āĻĨāĻŦāĻž x ∉ (A-B)} = {1,4,6,7,8,9}

xiv. (A⋃B)′ = U-(A⋃B) = {x âˆŖ x ∈ U āĻ…āĻĨāĻŦāĻž x ∉ (A⋃B)} = {1,7,9}

xv. (A⋂B)′ = U-(A⋃B) = {x âˆŖ x ∈ (A⋃B) āĻ…āĻĨāĻŦāĻž x ∉ (A⋂B)} = {1,2,3,5,6,7,8,9}

xvi. A⋂B′ = {x âˆŖ x ∈ A āĻ…āĻĨāĻŦāĻž x ∈ B′} = {{x âˆŖ x ∈ A āĻ…āĻĨāĻŦāĻž x ∉ B} = {2,3,5}

xvii. B′-A′ = {x âˆŖ x ∈ B′ āĻ…āĻĨāĻŦāĻž x ∉ A′} = {x âˆŖ x ∉ B āĻ…āĻĨāĻŦāĻž x ∈ A} = {2,3,5}

 

2. A āĻāĻŦāĻ‚ B āϏ⧇āϟ āĻĻ⧁āχāϟāĻŋ āϏāĻžāĻ°ā§āĻŦāĻŋāĻ• āϏ⧇āϟ U āĻāϰ āωāĻĒāϏ⧇āϟ āĨ¤ āϕ⧋āύ⧋ āĻļāĻ°ā§āϤāĻžāϧ⧀āύ⧇ āύāĻŋāĻšā§‡āϰ āϤāĻĨā§āϝāϗ⧁āϞ⧋ āϏāĻ āĻŋāĻ• āĻšāĻŦ⧇ āϤāĻž āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

i. A⋃B = A⋂B

ii. A⋃B = A

iii. A⋂B = A

iv. A⋂B = Ī•

v. A⋃B = Ī•

vi. A⋃B = U

vii. Aâ‹ƒĪ• = U

viii. Aâ€˛â‹ƒĪ• = Ī•

 

i. A=B āĻšāϞ⧇ A⋃B = A⋃A = A āĻāĻŦāĻ‚ A⋂B = A⋂A = A āĻ…āĻ°ā§āĻĨāĻžā§Ž A⋃B = A⋂B āĻšā§Ÿ

ii. B⊂A āĻšāϞ⧇ A⋃B = A āĻšā§Ÿ

iii. A⊂B āĻšāϞ⧇ A⋂B = A āĻšā§Ÿ

iv. A\B = A āĻ…āĻĨāĻŦāĻž B\A = B āĻšāϞ⧇ A⋂B = Ī• āĻšā§Ÿ āĨ¤ āĻ•āĻŋāĻ‚āĻŦāĻž,

āϝāĻĻāĻŋ A⋃B = U āĻšā§Ÿ āĻāĻŦāĻ‚ A′ = B āĻ…āĻĨāĻŦāĻž A = B′ āĻšā§Ÿ āϤāĻŦ⧇ A⋂B = Ī• āĻšā§Ÿ

v. A = Ī• āĻāĻŦāĻ‚ B = Ī• āĻšāϞ⧇ A⋃B = Ī•â‹ƒĪ• = Ī• āĻšā§Ÿ

vi. B = A′ āĻ…āĻĨāĻŦāĻž A = B′ āĻšāϞ⧇ A⋃B = U āĻšā§Ÿ

vii. A = U āĻšāϞ⧇ Aâ‹ƒĪ• = Uâ‹ƒĪ• = U āĻšā§Ÿ

viii. A = U āĻšāϞ⧇ Aâ€˛â‹ƒĪ• = Ī•â‹ƒĪ• = Ī• āĻšā§Ÿ

 

3. A āĻāĻŦāĻ‚ B āϏ⧇āϟ āĻĻ⧁āχāϟāĻŋ āϏāĻžāĻ°ā§āĻŦāĻŋāĻ• āϏ⧇āϟ U āĻāϰ āωāĻĒāϏ⧇āϟ āĨ¤ A′ āĻāĻŦāĻ‚ B′ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ A āĻāĻŦāĻ‚ B āĻāϰ āĻĒā§‚āϰāĻ• āϏ⧇āϟ āĻāĻŦāĻ‚ Ī• āĻļā§‚āĻ¨ā§āϝ āϏ⧇āϟ āĻšāϞ⧇-

i. A⋂A′

ii. A⋃A′

iii. Ī•â€˛

iv. U′

v. U⋂A

vi. (B′)′

 

i. A⋂A′ = Ī•

ii. A⋃A′ = U

iii. Ī•â€˛ = U-Ī• = U

iv. U′ = U-U = Ī•

v. U⋂A = A                 [âˆĩ A⊂U]

vi. (B′)′ = {x âˆŖ x ∈ (B′)′} = {x âˆŖ x ∉ B′} = {x âˆŖ x ∈ B} = B

 

4. A = {x âˆŖ x+8=8}, B = {x âˆŖ x2=9, 2x = 4}, C = {x âˆŖ x2-5x+6=0}, D = {x âˆŖ x2-11x+24=0} āĻšāϞ⧇, A\B āĻāĻŦāĻ‚ C⋂D āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

āĻāĻ–āĻžāύ⧇, A = {x âˆŖ x+8=8} = {x âˆŖ x = 8-8} = {0}

B = {x âˆŖ x2=9, 2x = 4} = {x âˆŖ x = Âą3 āĻāĻŦāĻ‚ x = 2} = Ī•

C = {x âˆŖ x2-5x+6=0} = {x âˆŖ x2-3x-2x+6 = 0} = {x âˆŖ (x-3)(x-2) = 0}

                                                                                    = {x âˆŖ x=3 āĻ…āĻĨāĻŦāĻž x=2}

                                                                                    = {2,3}

D = {x âˆŖ x2-11x+24=0} = {x âˆŖ x2-3x-8x+24=0} = {x âˆŖ (x-3)(x-8) = 0}

= {x âˆŖ x=3 āĻ…āĻĨāĻŦāĻž x=8}

                                                                                    = {3,8}

∴ A\B = {0}-Ī• = {0} = A         [{o} āĻāĻŦāĻ‚ Ī• āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻāĻ• āύ⧟ āϤāĻž āϞāĻ•ā§āώ āϰāĻžāĻ–āϤ⧇ āĻšāĻŦ⧇ āĨ¤ Ī• = {}, Ī• ≠ {0}]

∴ C⋂D = {3}

 

5. āϝāĻĻāĻŋ A = {1,2,3}, B = {a,b} āĻšā§Ÿ āϤāĻŦ⧇ A×B āĻāĻŦāĻ‚ B×A āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

AB = {(x,y) âˆŖ x ∈ A āĻāĻŦāĻ‚ y ∈ B} = {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}

BA = {(x,y) âˆŖ x ∈ B āĻāĻŦāĻ‚ y ∈ A} = {(a,1),(b,1),(a,2),(b,2),(a,3),(b,3)}

 

6. A = {1,2,3} āĻšāϞ⧇ A āĻāϰ āĻŽā§‹āϟ āωāĻĒāϏ⧇āϟ āĻ•ā§ŸāϟāĻŋ? P(A) āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

āĻāĻ–āĻžāύ⧇, A āĻāϰ āωāĻĒāĻžāĻĻāĻžāύ āϏāĻ‚āĻ–ā§āϝāĻž n=3 āĨ¤ ∴ A āĻāϰ āωāĻĒāϏ⧇āϟ āĻšāĻŦ⧇ 2n = 23 = 8āϟāĻŋ āĨ¤

∴ P(A) = {Ī•,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}}

 

7. (x+y, x2+y2) = (2,4) āĻšāϞ⧇ x2-y2 āĻāϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

āĻāĻ–āĻžāύ⧇, x+y = 2

āĻāĻŦāĻ‚, x

āφāĻŦāĻžāϰ, x2+y2=4 ⇒ (x+y)2-2xy = 4  ⇒ 22-2xy = 4  ⇒ xy = 0

āφāĻŦāĻžāϰ, x2+y2=4 ⇒ (x2+y2)2 = 16  ⇒ (x2-y2)2+4x2y2 = 16

                        ⇒ (x2-y2)2+4(xy)2 = 16

                        ⇒ (x2-y2)2+0 = 16

                        ⇒ x2-y2 = ±4

 

8. āĻāĻ•āϟāĻŋ āĻ­āĻžāώāĻž āĻļāĻŋāĻ•ā§āώāĻž āϕ⧇āĻ¨ā§āĻĻā§āϰ⧇ 120 āϜāύ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€ āύāĻŋāĻŽā§āύ⧋āĻ•ā§āϤ āĻ­āĻžāώāĻž āĻļāĻŋāĻ•ā§āώāĻž āϞāĻžāĻ­ āĻ•āϰ⧇ :

65 āϜāύ āĻĢā§āϰ⧇āĻžā§āϚ, 45 āϜāύ āϜāĻžāĻ°ā§āĻŽāĻžāύ, 42 āϜāύ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĨ¤ 20 āϜāύ āĻĢā§āϰ⧇āĻžā§āϚ āĻ“ āϜāĻžāĻ°ā§āĻŽāĻžāύ, 25 āϜāύ āĻĢā§āϰ⧇āĻžā§āϚ āĻ“ āϰāĻžāĻļāĻŋ⧟āĻžāύ, 15 āϜāύ āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ“ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻāĻŦāĻ‚ 8 āϜāύ āϤāĻŋāύāϟāĻŋ āĻ­āĻžāώāĻžāϰ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻŋ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āĨ¤ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ :

i. āĻ•āϤāϜāύ āĻ…āĻ¨ā§āϤāϤ āĻāĻ•āϟāĻŋ āĻ­āĻžāώāĻž āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇?

ii. āĻ•āϤāϜāύ āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ“ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ­āĻžāώāĻž āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻĢā§āϰ⧇āĻžā§āϚ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āύāĻž?

iii. āĻ•āϤāϜāύ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ“ āĻĢā§āϰ⧇āĻžā§āϚ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āύāĻž?

iv. āĻ•āϤāϜāύ āĻĢā§āϰ⧇āĻžā§āϚ āĻ“ āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āύāĻž?

v. āĻ•āϤāϜāύ āĻļ⧁āϧ⧁ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇?

vi. āĻ•āϤāϜāύ āĻļ⧁āϧ⧁ āĻĢā§āϰ⧇āĻžā§āϚ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇?

vii. āĻ•āϤāϜāύ āϕ⧋āύ āĻ­āĻžāώāĻžāχ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āύāĻž?

viii. āĻ•āϤāϜāύ āϕ⧋āύ āĻ­āĻžāώāĻžāχ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āύāĻž?

ix. āĻ•āϤāϜāύ āĻ āĻŋāĻ• āĻāĻ•āϟāĻŋ āĻ­āĻžāώāĻž āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇?

x. āĻ•āϤāϜāύ āĻ āĻŋāĻ• āĻĻ⧁āϟāĻŋ āĻ­āĻžāώāĻž āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇?

 

āĻāĻ–āĻžāύ⧇, āĻŽā§‹āϟ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€, n(S) = 120

āĻĢā§āϰ⧇āĻžā§āϚ āĻ­āĻžāώāĻž āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€, n(F) = 65

āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ­āĻžāώāĻž āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€, n(G) = 45

āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ­āĻžāώāĻž āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€, n(R) = 42

āĻĢā§āϰ⧇āĻžā§āϚ āĻ“ āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ­āĻžāώāĻž āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€, n(F⋂G) = 20

āĻĢā§āϰ⧇āĻžā§āϚ āĻ“ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ­āĻžāώāĻž āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€, n(F⋂R) = 25

āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ“ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ­āĻžāώāĻž āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€, n(G⋂R) = 15

āϤāĻŋāύāϟāĻŋ āĻ­āĻžāώāĻžāϰ āĻĒā§āϰāĻ¤ā§āϝ⧇āĻ•āϟāĻŋāϰ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€, n(F⋂G⋂R) = 8

i. āĻ…āĻ¨ā§āϤāϤāσ āĻāĻ•āϟāĻŋ āĻ­āĻžāώāĻž āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āĻāĻŽāύ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āϰ āϏāĻ‚āĻ–ā§āϝāĻž

= āĻāĻ• āĻŦāĻž āĻāĻ•āĻžāϧāĻŋāĻ• āĻ­āĻžāώāĻž āĻ…āĻ§ā§āϝ⧟āύāĻ•āĻžāϰ⧀ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āϰ āϏāĻ‚āĻ–ā§āϝāĻž

= n(F⋃G⋃R)

= n(F)+n(G)+n(R)-n(F⋂G)-n(F⋂R)-n(G⋂R)+n(F⋂G⋂R)

= 100

ii. n(G⋂R)-n(F⋂G⋂R) = 7

iii. n(F⋂R)-n(F⋂G⋂R) = 17

iv. n(F⋂G)-n(F⋂G⋂R) = 12

v. n(R)-n(F⋂R)-n(G⋂R)+n(F⋂G⋂R) = 10

vi. n(G)-n(G⋂R)-n(F⋂G)+n(F⋂G⋂R) = 18

vii. n(F)-n(F⋂R)-n(F⋂G)+n(F⋂G⋂R) = 28

viii. n(S)-n(F⋂G⋂R) = 10

ix. āĻ āĻŋāĻ• āĻāĻ•āϟāĻŋ āĻ­āĻžāώāĻž āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ = āĻļ⧁āϧ⧁ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ + āĻļ⧁āϧ⧁ āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ + āĻļ⧁āϧ⧁ āĻĢā§āϰ⧇āĻžā§āϚ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇

                                                = 56

x. āĻ āĻŋāĻ• āĻĻ⧁āϟāĻŋ āĻ­āĻžāώāĻž āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ = āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ“ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇, āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻĢā§āϰ⧇āĻžā§āϚ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āύāĻž + āĻĢā§āϰ⧇āĻžā§āϚ āĻ“ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇, āĻ•āĻŋāĻ¨ā§āϤ⧁ āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āύāĻž + āĻĢā§āϰ⧇āĻžā§āϚ āĻ“ āϜāĻžāĻ°ā§āĻŽāĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇, āĻ•āĻŋāĻ¨ā§āϤ⧁ āϰāĻžāĻļāĻŋ⧟āĻžāύ āĻ…āĻ§ā§āϝ⧟āύ āĻ•āϰ⧇ āύāĻž

                                                = 36

 

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ āĻ“ āϏāĻŽāĻžāϧāĻžāĻ¨Â 

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ :

1. āϕ⧋āύ⧋ āĻ¸ā§āϕ⧁āϞ⧇ 120 āϜāύ āĻ›āĻžāĻ¤ā§āϰ⧇āϰ āĻŽāĻ§ā§āϝ⧇ 75 āϜāύ āĻŦāĻžāĻ‚āϞāĻž āĻ­āĻžāώāĻžā§Ÿ āĻāĻŦāĻ‚ 60 āϜāύ āχāĻ‚āϰ⧇āϜāĻŋ āĻ­āĻžāώāĻžā§Ÿ āĻ•āĻĨāĻž āĻŦāϞāϤ⧇ āĻĒāĻžāϰ⧇ āĨ¤ āĻ•āϤāϜāύ āωāϭ⧟ āĻ­āĻžāώāĻžā§Ÿ āĻ•āĻĨāĻž āĻŦāϞāϤ⧇ āĻĒāĻžāϰ⧇?                [DU : 2001-02]

a. 35

b. 10

c. 15

d. 20

 

2. āĻāĻ•āϟāĻŋ āĻ•ā§āϞāĻžāĻļ⧇āϰ 120 āϜāύ āĻ›āĻžāĻ¤ā§āϰ; āϏāĻ•āϞ⧇āχ āĻ•ā§āϰāĻŋāϕ⧇āϟ āĻ…āĻĨāĻŦāĻž āĻĢ⧁āϟāĻŦāϞ āĻ…āĻĨāĻŦāĻž āωāϭ⧟āχ āϛ⧇āϞ⧇ āĨ¤75 āϜāύ āĻ•ā§āϰāĻŋāϕ⧇āϟ āĻāĻŦāĻ‚ 60 āϜāύ āĻĢ⧁āϟāĻŦāϞ āϖ⧇āϞ⧇ āĨ¤ āĻ•āϤāϜāύ āωāϭ⧟āχ āϖ⧇āϞ⧇-                  [DU : 2002-03]

a. 13

b. 15

c. 25

d. 23

 

3. āύāĻŋāĻšā§‡āϰ āϕ⧋āύāϟāĻŋ āϏāĻ¤ā§āϝ āωāĻ•ā§āϤāĻŋ?                      [DU : 2002-03]

a. A\B = A⋂B′

b. A\B = A⋃B′

c. A\B = A′⋂B

d. A\B = A′⋃B

 

4. (x+y,x2+y2) = (2,4) āĻšāϞ⧇ x2-y2 āĻāϰ āĻŽāĻžāύ-                      [DU : 2003-04]

a. Âą2

b. Âą4

c. Âą6

d. Âą8

 

āϏāĻŽāĻžāϧāĻžāύ: 

1. n(B⋂E) = n(B)+n(E)-n(B⋃E)

                        = 75+60-120                [see example 8 for details]

                        = 15

ans. c

 

2. n(C⋂F) = n(C)+n(F)-n(C⋃F)

                        = 15                 [see example 8 for details]

ans. b

 

3. A\B = {x âˆŖ x ∈ A āĻāĻŦāĻ‚ x ∉ B}

            = {x âˆŖ x ∈ A āĻāĻŦāĻ‚ x ∈ B′}

            = A⋂B′

ans. a

 

4. x2+y2 = 4                  [see example 7 for details]

⇒ (x+y)2-2xy = 4

⇒ xy = 0

āφāĻŦāĻžāϰ, (x2+y2)2 = (x2-y2)2+4x2y2 = 16

            ⇒ x2-y2 = 4

ans. b

 

Â