Â
āϏāĻžāϧāĻžāϰāĻŖ āϧāĻžāϰāĻŖāĻžÂ
Â
- āϏā§āĻ āĻšāĻā§āĻā§ āϏā§āύāĻŋāϰā§āĻĻāĻŋāώā§āĻāĻāĻžāĻŦā§ āϏāĻāĻā§āĻāĻžā§āĻŋāϤ āĻŦāϏā§āϤā§āϏāĻŽā§āĻšā§āϰ āϏāĻŽāĻžāĻšāĻžāϰ āĻŦāĻž āϤāĻžāϞāĻŋāĻāĻž āĨ¤ āϏā§āĻā§āϰ āĻ āύā§āϤāϰā§āĻāϤ āĻĒā§āϰāϤā§āϝā§āĻ āĻŦāϏā§āϤā§āĻā§ āĻ āϏā§āĻā§ āĻāĻĒāĻžāĻĻāĻžāύ (element) āĻŦāĻž āϏāĻĻāϏā§āϝ (member) āĻŦāϞāĻž āĻšā§ āĨ¤
- āϏāĻžāϧāĻžāϰāĻŖāϤ āϏā§āĻ āĻĻā§āĻ āĻĒāĻĻā§āϧāϤāĻŋāϤ⧠āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ :
- āϤāĻžāϞāĻŋāĻāĻž āĻĒāĻĻā§āϧāϤāĻŋ (Tabular Method) : āϝā§āĻŽāύ A = {1,2,3,4,5}
- āϏā§āĻ āĻāĻ āύ āĻĒāĻĻā§āϧāϤāĻŋ (Set Builder Method) : āϝā§āĻŽāύ B = {x âŖ x â N āĻāĻŦāĻ x ⤠5}
- āϏāĻŽāĻžāύ āϏā§āĻ : āϝā§āĻā§āύ⧠āϏā§āĻ A=B āĻšāĻŦā§ āϝāĻĻāĻŋ A āϏā§āĻā§āϰ āϏāĻāϞ āϏāĻĻāϏā§āϝ B āϏā§āĻā§āϰ āϏāĻĻāϏā§āϝ āĻšā§ āĻāĻŦāĻ B āϏā§āĻā§āϰ āϏāĻāϞ āϏāĻĻāϏā§āϝ A āϏā§āĻā§āϰ āϏāĻĻāϏā§āϝ āĻšā§ āĨ¤ āĻ āϰā§āĻĨāĻžā§,
A=B āĻšāĻŦā§ āϝāĻĻāĻŋ āĻāĻŦāĻ āĻā§āĻŦāϞ āϝāĻĻāĻŋ āĻšāϞ⧠x â B āĻšā§ āĻāĻŦāĻ x â B āĻšāϞ⧠x â A āĻšā§ āĨ¤
- āĻĢāĻžāĻāĻāĻž āϏā§āĻ/ āĻļā§āύā§āϝ āϏā§āĻ : āϝ⧠āϏā§āĻā§āϰ āĻā§āύ⧠āϏāĻĻāϏā§āϝ āύā§āĻ āϤāĻžāĻā§ āĻĢāĻžāĻāĻāĻž āĻŦāĻž āĻļā§āύā§āϝ (Empty) āϏā§āĻ āĻŦāϞāĻž āĻšā§ āĨ¤ āĻļā§āύā§āϝ āϏā§āĻāĻā§ $\Phi \phi \phi \Phi \phi$ āϏāĻāĻā§āϤ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤
- āĻāĻĒāϏā§āĻ : āϝāĻĻāĻŋ A āϏā§āĻā§āϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻāĻĒāĻžāĻĻāĻžāύ B āϏā§āĻā§āϰāĻ āĻāĻĒāĻžāĻĻāĻžāύ āĻšā§ āϤāĻŦā§ A āĻā§ āϏā§āĻā§āϰ B āĻāĻĒāϏā§āĻ (Subset) āĻŦāϞāĻž āĻšā§ āĨ¤ āĻāĻŦāĻ A â B āϞāĻŋāĻā§ āϤāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤ āĻāĻĒāϏā§āĻ āĻŦā§āĻāĻžāϤ⧠â āĻāĻŋāĻšā§āύāĻ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāĻž āĻšā§ āĨ¤ A â B āĻšā§ āϝāĻĻāĻŋ āĻ āĻā§āĻŦāϞ āϝāĻĻāĻŋ x â A āĻšāϞ⧠x â B āĻšā§ āĨ¤ āĻā§āύ⧠āϏā§āĻā§āϰ āϏāĻĻāϏā§āϝ āϏāĻāĻā§āϝāĻž n āĻšāϞ⧠āĻ āϏā§āĻā§āϰ āĻāύā§āϝ 2n āϏāĻāĻā§āϝāĻ āĻāĻĒāϏā§āĻ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āĨ¤
- āĻĒā§āϰāĻā§āϤ āĻāĻĒāϏā§āĻ : āϏā§āĻ A āĻā§ B āĻāϰ āĻĒā§āϰāĻā§āϤ āĻāĻĒāϏā§āĻ (Proper Subset) āĻŦāϞāĻž āĻšā§ āϝāĻĻāĻŋ A â B āĻāĻŦāĻ A â B āĻšā§ āĨ¤ A, B āĻāϰ āĻĒā§āϰāĻā§āϤ āĻāĻĒāϏā§āĻ āĻŦā§āĻāĻžāϤ⧠A â B āϞā§āĻāĻž āĻšā§ āĨ¤ āĻā§āύ āϏā§āĻā§āϰ āϏāĻĻāϏā§āϝ āϏāĻāĻā§āϝāĻž n āĻšāϞ⧠āĻ āϏā§āĻā§āϰ āĻāύā§āϝ (2n-1) āϏāĻāĻā§āϝāĻ āĻĒā§āϰāĻā§āϤ āĻāĻĒāϏā§āĻ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§ āĨ¤
- āĻļāĻā§āϤāĻŋ āϏā§āĻ : āĻā§āύ⧠āϏā§āĻā§āϰ āĻāĻĒāϏā§āĻāϏāĻŽā§āĻšā§āϰ āϏā§āĻāĻā§ āĻ āϏā§āĻā§āϰ āĻļāĻā§āϤāĻŋ āϏā§āĻ (Power set) āĻŦāϞ⧠āĨ¤ āĻā§āύ āϏā§āĻ A āĻāϰ āĻĒāĻžāĻā§āĻžāϰ āϏā§āĻāĻā§ P(A) āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤
- āϏāĻžāϰā§āĻŦāĻŋāĻ āϏā§āĻ : āĻāϞā§āĻāύāĻžāϧā§āύ āϏāĻāϞ āϏā§āĻāĻā§ āϤāĻĨāĻž āϤāĻžāĻĻā§āϰ āĻāĻĒāĻžāĻĻāĻžāύāϏāĻŽā§āĻšāĻā§ āĻāĻāĻāĻŋ āĻŦāĻŋāĻļā§āώ āϏā§āĻā§āϰ āĻ āύā§āϤāϰā§āĻā§āĻā§āϤ āĻŦāĻŋāĻŦā§āĻāύāĻž āĻāϰāĻž āĻšā§ āĨ¤ āϏā§āĻ āĻŦāĻŋāĻļā§āώ āϏā§āĻāĻā§ āĻ āĻāϞā§āĻāύāĻžāϰ āϏāĻžāϰā§āĻŦāĻŋāĻ āϏā§āĻ (Universal Set) āĻŦāϞāĻž āĻšā§ āĻāĻŦāĻ āϏāĻžāϧāĻžāϰāĻŖāϤ â āĻĒā§āϰāϤā§āĻā§āϰ āϏāĻžāĻšāĻžāϝā§āϝ⧠āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤
- āĻŦā§āϝāĻŦāϧāĻŋ : a āĻ b āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻž āĻāĻŦāĻ a<b āĻšāϞ⧠āĻāϰ āĻāĻžāϰāĻāĻŋ āĻŦāĻŋāĻļā§āώ āϧāϰāύā§āϰ āĻāĻĒāϏā§āĻāĻā§ a āĻ b āĻĒā§āϰāĻžāύā§āϤāĻŦāĻŋāĻļāĻŋāώā§āĻ āĻŦā§āϝāĻŦāϧāĻŋ (Interval) āĻŦāϞāĻž āĻšā§ āĨ¤ āĻĻā§āϰāώā§āĻāĻŦā§āϝ, āϏāĻāϞ āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻžāϰ āϏā§āĻāĻā§ R āĻĻā§āĻŦāĻžāϰāĻž āϏā§āĻāĻŋāϤ āĻāϰāĻž āĻšā§ āĨ¤
- a āĻĨā§āĻā§ b āĻĒāϰā§āϝāύā§āϤ āĻā§āϞāĻž (Open) āĻŦā§āϝāĻŦāϧāĻŋ : ]a,b[ = (a,b) = {xâŖx â R āĻāĻŦāĻ a<x<b}
- a āĻĨā§āĻā§ b āĻĒāϰā§āϝāύā§āϤ āĻŦāĻĻā§āϧ (Closed) āĻŦā§āϝāĻŦāϧāĻŋ : [a,b] = {xâŖx â R āĻāĻŦāĻ aâ¤xâ¤b}
- a āĻĨā§āĻā§ b āĻĒāϰā§āϝāύā§āϤ āĻā§āϞāĻž-āĻŦāĻĻā§āϧ āĻŦā§āϝāĻŦāϧāĻŋ : [a,b] = (a,b] = {xâŖx â R āĻāĻŦāĻ a<xâ¤b}
- a āĻĨā§āĻā§ b āĻĒāϰā§āϝāύā§āϤ āĻŦāĻĻā§āϧ-āĻā§āϞāĻž āĻŦā§āϝāĻŦāϧāĻŋ : [a,b[ = [a,b) = {xâŖx â R āĻāĻŦāĻ aâ¤x<b}
- āϏāĻāϝā§āĻ āϏā§āĻ : āĻĻā§āĻāĻŋ āϏā§āĻ A āĻāĻŦāĻ B āĻāϰ āϏāĻāϞ āĻāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§ā§ (āĻā§āύ⧠āĻāĻĒāĻžāĻĻāĻžāύā§āϰ āĻĒā§āύāϰāĻžāĻŦā§āϤā§āϤāĻŋ āύāĻž āĻāϰā§) āĻāĻ āĻŋāϤ āϏā§āĻāĻā§ A āĻāĻŦāĻ B āĻāϰ āϏāĻāϝā§āĻ āϏā§āĻ āĻŦāϞāĻž āĻšā§ āĨ¤ āϝāĻž AâB āĻĒā§āϰāϤā§āĻā§āϰ āĻŽāĻžāϧā§āϝāĻŽā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤ āĻ āϰā§āĻĨāĻžā§,
AâB = {x âŖ x â āĻ āĻĨāĻŦāĻžÂ x â b}
āĻĻā§āϰāώā§āĻāĻŦā§āϝ, x â AâB āĻšā§ āϝāĻĻāĻŋ āĻ āĻā§āĻŦāϞ āϝāĻĻāĻŋ x â A āĻāĻŦāĻ X â B āĻšā§ āĨ¤
āϏāĻāĻā§āĻāĻž āĻĨā§āĻā§ āĻāĻāĻž āϏā§āĻĒāώā§āĻ āϝā§, i. AâB = BâA [āĻŦāĻŋāύāĻŋāĻŽā§ āĻŦāĻŋāϧāĻŋ]
                                    ii. A â AâB āĻāĻŦāĻ B â AâB                         Â
- āĻā§āĻĻ āϏā§āĻ : āĻĻā§āĻāĻŋ āϏā§āĻ A āĻāĻŦāĻ B āĻāϰ āϏāĻāϞ āϏāĻžāϧāĻžāϰāĻŖ (Common) āĻāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§ā§ āĻāĻ āĻŋāϤ āϏā§āĻāĻā§ A āĻāĻŦāĻ B āĻāϰ āĻā§āĻĻ āϏā§āĻ āĻŦāϞāĻž āĻšā§ āĨ¤ āϝāĻž AâB āϞāĻŋāĻā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤ āĻ āϰā§āĻĨāĻžā§
AâB = {x âŖ x â A āĻāĻŦāĻ x â B}
āĻĻā§āϰāώā§āĻāĻŦā§āϝ, x â AâB āĻšā§ āϝāĻĻāĻŋ āĻ āĻā§āĻŦāϞ āϝāĻĻāĻŋ x â A āĻ āĻĨāĻŦāĻž x â B
āϏāĻāĻā§āĻāĻž āĻĨā§āĻā§ āĻāĻāĻž āϏā§āĻĒāώā§āĻ āϝā§, i. AB = BA [āĻŦāĻŋāύāĻŋāĻŽā§ āĻŦāĻŋāϧāĻŋ]
 ii. AâB â A āĻāĻŦāĻ AâB â B
- āύāĻŋāĻļā§āĻā§āĻĻ āϏā§āĻ : āĻĻā§āĻāĻŋ āϏā§āĻ A āĻāĻŦāĻ B āύāĻŋāĻļā§āĻā§āĻĻ āϏā§āĻ āĻŦāĻž āϏāĻāĻā§āώā§āĻĒā§ āύāĻŋāĻļā§āĻā§āĻĻ āĻŦāϞāĻž āĻšā§ āϝāĻĻāĻŋ A āĻāĻŦāĻ B āĻāϰ āĻŽāϧā§āϝ⧠āĻā§āύ⧠āϏāĻžāϧāĻžāϰāĻŖ āĻāĻĒāĻžāĻĻāĻžāύ āĻŦāĻŋāĻĻā§āϝāĻŽāĻžāύ āύāĻž āĻĨāĻžāĻā§ āĨ¤ āĻ āϰā§āĻĨāĻžā§, AâB = Ī āϝāĻĻāĻŋ āĻšā§ āĨ¤
- āĻ āύā§āϤāϰ āϏā§āĻ : A āĻāĻŦāĻ B āĻĻā§āĻāĻŋ āϏā§āĻ āĻšāϞā§, āϝ⧠āϏāĻŽāϏā§āϤ āĻāĻĒāĻžāĻĻāĻžāύ A āϏā§āĻā§ āĻāĻā§ āĻāĻŋāύā§āϤ⧠B āϏā§āĻā§ āύā§āĻ, āĻāϰā§āĻĒ āĻāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§ā§ āĻāĻ āĻŋāϤ āϏā§āĻāĻā§ A āĻāĻŦāĻ B āĻāϰ āĻ āύā§āϤāϰ āϏā§āĻ (Differecne Set) āĻŦāϞ⧠āĨ¤ A āĻāĻŦāĻ B āĻāϰ āĻ āύā§āϤāϰ āϏā§āĻāĻā§ A-B āĻŦāĻž A\B āύāĻŋā§ā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤ āĻāĻāĻāĻāĻžāĻŦā§, B āϏā§āĻā§ āĻāĻā§ āĻāĻŋāύā§āϤ⧠A āϏā§āĻā§ āύā§āĻ āĻāϰā§āĻĒ āĻāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§ā§ āĻāĻ āĻŋāϤ āϏā§āĻāĻā§ B āĻāĻŦāĻ A āĻāϰ āĻ āύā§āϤāϰ āϏā§āĻ āĻŦāϞ⧠āĨ¤ B āĻāĻŦāĻ A āĻāϰ āĻ āύā§āϤāϰ āϏā§āĻāĻā§ B-A āĻŦāĻž B\A āϞāĻŋāĻā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤
A-B = A\B = {X âŖ X â A āĻāĻŦāĻ X â B}
B-A = B\A = {X âŖ X â B āĻāĻŦāĻ X â A}
āĻĻā§āϰāώā§āĻāĻŦā§āϝ : i. A-B â A
           ii. B-A â B
- āĻĒā§āϰāĻ āϏā§āĻ : āĻā§āύ⧠āϏā§āĻā§āϰ āĻāĻĒāĻžāĻĻāĻžāύāĻā§āϞā§āĻā§ āĻŦāĻžāĻĻ āĻĻāĻŋā§ā§ āϏāĻžāϰā§āĻŦāĻŋāĻ āϏā§āĻā§āϰ āĻ āύā§āϝāĻžāύā§āϝ āϏāĻŽāϏā§āϤ āĻāĻĒāĻžāĻĻāĻžāύ āύāĻŋā§ā§ āĻāĻ āĻŋāϤ āϏā§āĻāĻā§ āĻāĻā§āϤ āϏā§āĻā§āϰ āĻĒā§āϰāĻ āϏā§āĻ āĻŦāϞ⧠āĨ¤ A āĻā§āύ āϏā§āĻ āĻšāϞ⧠A āĻāϰ āĻĒā§āϰāĻ (Complement) āϏā§āĻāĻā§ AⲠāĻĒā§āϰāϤā§āĻ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤ āĻ āϰā§āĻĨāĻžā§,
AⲠ= U-A = {X âŖ X â U āĻāĻŦāĻ X â A}
- āĻā§āϰāĻŽāĻā§ā§ : āĻĻā§āĻāĻŋ āϏāĻāĻā§āϝāĻžāϰ āĻā§āϰāĻŽāĻā§ā§ā§ (Ordered Pair) āĻāĻāĻāĻŋ āϏāĻāĻā§āϝāĻžāĻā§ āĻĒā§āϰāĻĨāĻŽ āĻāĻŦāĻ āĻ āĻĒāϰāĻāĻŋāĻā§ āĻĻā§āĻŦāĻŋāϤā§ā§ āĻāĻĒāĻžāĻĻāĻžāύ āϧāϰāĻž āĻšā§ āĨ¤ (a,b) āĻĻā§āĻŦāĻžāϰāĻž āĻāĻāĻāĻŋ āĻā§āϰāĻŽāĻā§ā§ āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰāĻž āĻšā§ āϝāĻžāϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ a āĻāĻŦāĻ āĻĻā§āĻŦāĻŋāϤā§ā§ āĻĒāĻĻ b āĨ¤ āĻā§āϰāĻŽāĻā§ā§ (a,b) āĻ (c,d) āϏāĻŽāĻžāύ āĻšā§ āĻ āϰā§āĻĨāĻžā§, (a,b) = (c,d) āĻšā§ āϝāĻĻāĻŋ āĻ āĻā§āĻŦāϞ āϝāĻĻāĻŋ a=c āĻāĻŦāĻ b=d āĻšā§ āĨ¤
- āĻāĻžāϰā§āϤā§āϏā§ā§ āĻā§āĻŖāĻ āϏā§āĻ : āϝāĻĻāĻŋ A āĻāĻŦāĻ B āĻĻā§āĻāĻŋ āϏā§āĻ āĻšā§, āϤāĻŦā§ A āĻāϰ āĻāĻĒāĻžāĻĻāĻžāύāĻā§āϞā§āĻā§ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ āĻ B āĻāϰ āĻāĻĒāĻžāĻĻāĻžāύāĻā§āϞā§āĻā§ āĻĻā§āĻŦāĻŋāϤā§ā§ āĻĒāĻĻ āϧāϰ⧠āĻāĻ āĻŋāϤ āĻā§āϰāĻŽāĻā§ā§ā§āϰ āϏā§āĻāĻā§ A āĻāĻŦāĻ B āĻāϰ āĻāĻžāϰā§āϤā§āϏā§ā§ āĻā§āĻŖāĻ (Cartesian Product) āϏā§āĻ āĻŦāϞ⧠āĨ¤ āϝāĻž AÃB āĻĒā§āϰāϤā§āĻ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤ āĻ āϰā§āĻĨāĻžā§,
AÃB = {(x,y) âŖ x â A āĻāĻŦāĻ y â B}
AÃB = {(x,y) âŖ x â B āĻāĻŦāĻ y â A}
āĻāĻŦāĻ āϏāĻžāϧāĻžāϰāĻŖāĻāĻžāĻŦā§, AÃB â BÃA
āĻĻā§āϰāώā§āĻāĻŦā§āϝ, A āϏā§āĻā§ p āϏāĻāĻā§āϝāĻ āĻŦāϏā§āϤ⧠āĻāĻŦāĻ B āϏā§āĻā§ q āϏāĻāĻā§āϝāĻ āĻŦāϏā§āϤ⧠āĻĨāĻžāĻāϞ⧠AÃB āϏā§āĻā§ pq āϏāĻāĻā§āϝāĻ āĻŦāϏā§āϤ⧠āĻĨāĻžāĻāĻŦā§ āĨ¤
- āϏā§āĻā§āϰ āϏāĻāϝā§āĻ āĻŦāĻŋāϧāĻŋ (Associative Law) : A,B,C āϝā§āĻā§āύ⧠āϤāĻŋāύāĻāĻŋ āϏā§āĻ āĻšāϞā§,
- (AâB)âC = Aâ(BâC)
- (AâB)âC = Aâ(BâC)
- āϏā§āĻā§āϰ āĻŦāĻŖā§āĻāύ āĻŦāĻŋāϧāĻŋ (Distributive Law) : A,B,C āϝā§āĻā§āύ⧠āϤāĻŋāύāĻāĻŋ āϏā§āĻ āĻšāϞā§,
- Aâ(BâC) = (AâB)â(AâC)
- Aâ(BâC) = (AâB)â(AâC)
- āĻ āĻā§āĻĻāĻ āĻŦāĻŋāϧāĻŋ (Identity Law) : A āϝā§āĻā§āύ⧠āϏā§āĻ āĻāĻŦāĻ U āϏāĻžāϰā§āĻŦāĻŋāĻ āϏā§āĻ āĻšāϞā§,
- AâĪ = A
- AâU = A
- AâU = U
- AâĪ = Ī
- āĻĒā§āϰāĻ āĻŦāĻŋāϧāĻŋ (Complement Law) : U āϏāĻžāϰā§āĻŦāĻŋāĻ āϏā§āĻ, A āϝā§āĻā§āύ⧠āĻāĻāĻāĻŋ āϏā§āĻ āĻāĻŦāĻ Ī āĻĢāĻžāĻāĻāĻž āϏā§āĻ āĻāĻŦāĻ Uâ˛, AⲠāĻāĻŦāĻ ĪⲠāϝāĻĨāĻžāĻā§āϰāĻŽā§ āϤāĻžāĻĻā§āϰ āĻĒā§āϰāĻ āϏā§āĻ āĻšāϞā§,
- AâAⲠ= U
- AâAⲠ= Ī
- (Aâ˛)Ⲡ= A
- UⲠ= Ī
- ĪⲠ= U
- āĻĻā§āϝ āĻŽāϰāĻāĻžāύā§āϰ āĻŦāĻŋāϧāĻŋ (De Morganâs Law) : A,B āϝā§āĻāύ⧠āĻĻā§āĻāĻāĻŋ āϏā§āĻ āĻāĻŦāĻ AⲠāĻ BⲠāϤāĻžāĻĻā§āϰ āĻĒā§āϰāĻ āϏā§āĻ āĻšāϞā§,
- (AâB)Ⲡ= Aâ˛âBâ˛
- (AâB)Ⲡ= Aâ˛âBâ˛
- A āϏāĻžāύā§āϤ (finite) āϏā§āĻ āĻšāϞā§, A āĻāϰ āĻāĻĒāĻžāĻĻāĻžāύ āϏāĻāĻā§āϝāĻž āĻāĻŽāϰāĻž n(A) āĻĻāĻŋā§ā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻŋ āĨ¤
- A āĻāĻŦāĻ B āĻĻā§āĻāĻāĻŋ āϏāĻžāύā§āϤ āϏā§āĻ āĻĢāϞ⧠AâB āĻ āĻāĻāĻāĻŋ āϏāĻžāĻ āϏā§āĻ āĨ¤ āϏā§āĻā§āώā§āϤā§āϰā§,
n(AâB) = n(A)+n(B)-N(AâB)
n((AâB)â˛) = n(S)-n(AâB)       [A āĻāĻŦāĻ B āĻāĻā§ā§ S āĻāϰ āĻāĻĒāϏā§āĻ āĻšāϞā§]
                       = n(S)-n(A)-n(B)+n(AâB)
- A,B,C āϏāĻžāĻ āϏā§āĻ āĻĢāϞā§,
n(AâBâC) = n(A)+n(B)+n(C)-n(AâB)-n(BâC)-n(CâA)+n(AâBâC)
- āĻā§āύāĻāĻŋāϤā§āϰ : āĻā§āύ⧠āϏā§āĻā§āϰ āĻāĻāĻžāϧāĻŋāĻ āĻāĻĒāϏā§āĻā§āϰ āĻŽāϧā§āϝ⧠āϏāĻŽā§āĻĒāϰā§āĻ āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰāϤ⧠āĻ āύā§āĻ āϏāĻŽā§ āĻā§āϝāĻžāĻŽāĻŋāϤāĻŋāĻ āĻāĻŋāϤā§āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰāĻž āĻšā§ āĨ¤ āĻŦā§āĻāĻŋāĻļ āϤāϰā§āĻāĻļāĻžāϏā§āϤā§āϰāĻŦāĻŋāĻĻ āĻāύ āĻā§āύ āĻĒā§āϰāĻĨāĻŽā§ āĻāϰā§āĻĒ āĻāĻŋāϤā§āϰ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰā§āύ āĻŦāϞ⧠āϤāĻžāϰ āύāĻžāĻŽāĻžāύā§āϏāĻžāϰ⧠āĻāĻā§āϞā§āĻā§ āĻā§āύāĻāĻŋāϤā§āϰ (Venn Diagram) āĻŦāϞāĻž āĻšā§ āĨ¤ āĻā§āύāĻāĻŋāϤā§āϰ⧠āϏāĻžāϰā§āĻŦāĻŋāĻ āϏā§āĻāĻā§ āϏāĻžāϧāĻžāϰāĻŖāϤ āĻā§āϤāĻā§āώā§āϤā§āϰ āĻāĻŦāĻ āϏāĻāĻļā§āϞāĻŋāώā§āĻ āϏā§āĻāĻā§āϞā§āĻā§ āĻŦā§āϤā§āϤ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰāĻž āĻšā§ āĨ¤ āύāĻŋāĻŽā§āύ⧠āĻā§ā§āĻāĻāĻŋ āĻā§āύāĻāĻŋāϤā§āϰ āĻĻā§āĻāĻžāύ⧠āĻšāϞ :
āĻāĻžā§ āĻ āĻāĻļāĻā§āĻā§ AâB
āĻāĻžā§ āĻ āĻāĻļāĻā§āĻā§ AâB
āĻāĻžā§ āĻ āĻāĻļāĻā§āĻā§ (AâB)â˛
āĻāĻžā§ āĻ āĻāĻļāĻā§āĻā§ A\B
āĻāĻžā§ āĻ āĻāĻļāĻā§āĻā§ Aâ˛
Â
āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϏāĻŽāϏā§āϝāĻžāϰ āϏāĻŽāĻžāϧāĻžāύÂ
1. āϝāĻĻāĻŋ U = {1,2,3,4,5,6,7,8,9}, A = {2,3,4,5}, B = {4,6,8}, C = {3,4,5,6,7} āĻšā§ āϤāĻŦā§,
i. AâB
ii. BâC
iii. AâC
iv. Aâ(BâC)
v. (AâB)âC
vi. AâB
vii. BâC
viii. AâC
ix. (AâB)âC
x. Aâ(BâC)
xi. Aâ˛
xii. A\B
xiii. (A\B)â˛
xiv. (AâB)â˛
xv. (AâB)â˛
xvi. AâBâ˛
xvii. Bâ˛-AⲠāύāĻŋāϰā§āĻŖā§ āĻāϰ
Â
i. AâB = {x âŖ x â A āĻ āĻĨāĻŦāĻž x â B} = {2,3,4,5,6,8}
ii. BâC = {3,4,5,6,7,8}
iii. AâC = {2,3,4,5,6,7}
iv. A U(BâC) = {x âŖ x â A āĻ āĻĨāĻŦāĻž x â (BâC)} = {2,3,4,5,6,7,8}
v. (AâB)âC = {x âŖ x â (AâB) āĻ āĻĨāĻŦāĻž x â C} = {2,3,4,5,6,7,8}
vi. AâB = {x âŖ x â A āĻ āĻĨāĻŦāĻž x â B} = {4}
vii. BâC = {4,6}
viii. AâC = {3,4,5}
ix. (AâB)âC = {x âŖ x â (AâB) āĻ āĻĨāĻŦāĻž x â C} = {4}
x. Aâ(BâC) = {x âŖ x â A āĻ āĻĨāĻŦāĻž x â (BâC)} = {4}
xi. AⲠ= U-A = {x âŖ x â U āĻ āĻĨāĻŦāĻž x â A} = {1,6,7,8,9}
xii. A-B = {x âŖ x â A āĻ āĻĨāĻŦāĻž x â B} = {2,3,5}
xiii. (A\B)Ⲡ= U-(A-B) = {x âŖ x â U āĻ āĻĨāĻŦāĻž x â (A-B)} = {1,4,6,7,8,9}
xiv. (AâB)Ⲡ= U-(AâB) = {x âŖ x â U āĻ āĻĨāĻŦāĻž x â (AâB)} = {1,7,9}
xv. (AâB)Ⲡ= U-(AâB) = {x âŖ x â (AâB) āĻ āĻĨāĻŦāĻž x â (AâB)} = {1,2,3,5,6,7,8,9}
xvi. AâBⲠ= {x âŖ x â A āĻ āĻĨāĻŦāĻž x â Bâ˛} = {{x âŖ x â A āĻ āĻĨāĻŦāĻž x â B} = {2,3,5}
xvii. Bâ˛-AⲠ= {x âŖ x â BⲠāĻ āĻĨāĻŦāĻž x â Aâ˛} = {x âŖ x â B āĻ āĻĨāĻŦāĻž x â A} = {2,3,5}
Â
2. A āĻāĻŦāĻ B āϏā§āĻ āĻĻā§āĻāĻāĻŋ āϏāĻžāϰā§āĻŦāĻŋāĻ āϏā§āĻ U āĻāϰ āĻāĻĒāϏā§āĻ āĨ¤ āĻā§āύ⧠āĻļāϰā§āϤāĻžāϧā§āύ⧠āύāĻŋāĻā§āϰ āϤāĻĨā§āϝāĻā§āϞ⧠āϏāĻ āĻŋāĻ āĻšāĻŦā§ āϤāĻž āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
i. AâB = AâB
ii. AâB = A
iii. AâB = A
iv. AâB = Ī
v. AâB = Ī
vi. AâB = U
vii. AâĪ = U
viii. Aâ˛âĪ = Ī
Â
i. A=B āĻšāϞ⧠AâB = AâA = A āĻāĻŦāĻ AâB = AâA = A āĻ āϰā§āĻĨāĻžā§ AâB = AâB āĻšā§
ii. BâA āĻšāϞ⧠AâB = A āĻšā§
iii. AâB āĻšāϞ⧠AâB = A āĻšā§
iv. A\B = A āĻ āĻĨāĻŦāĻž B\A = B āĻšāϞ⧠AâB = Ī āĻšā§ āĨ¤ āĻāĻŋāĻāĻŦāĻž,
āϝāĻĻāĻŋ AâB = U āĻšā§ āĻāĻŦāĻ AⲠ= B āĻ āĻĨāĻŦāĻž A = BⲠāĻšā§ āϤāĻŦā§ AâB = Ī āĻšā§
v. A = Ī āĻāĻŦāĻ B = Ī āĻšāϞ⧠AâB = ĪâĪ = Ī āĻšā§
vi. B = AⲠāĻ āĻĨāĻŦāĻž A = BⲠāĻšāϞ⧠AâB = U āĻšā§
vii. A = U āĻšāϞ⧠AâĪ = UâĪ = U āĻšā§
viii. A = U āĻšāϞ⧠Aâ˛âĪ = ĪâĪ = Ī āĻšā§
Â
3. A āĻāĻŦāĻ B āϏā§āĻ āĻĻā§āĻāĻāĻŋ āϏāĻžāϰā§āĻŦāĻŋāĻ āϏā§āĻ U āĻāϰ āĻāĻĒāϏā§āĻ āĨ¤ AⲠāĻāĻŦāĻ BⲠāϝāĻĨāĻžāĻā§āϰāĻŽā§ A āĻāĻŦāĻ B āĻāϰ āĻĒā§āϰāĻ āϏā§āĻ āĻāĻŦāĻ Ī āĻļā§āύā§āϝ āϏā§āĻ āĻšāϞā§-
i. AâAâ˛
ii. AâAâ˛
iii. Īâ˛
iv. Uâ˛
v. UâA
vi. (Bâ˛)â˛
Â
i. AâAⲠ= Ī
ii. AâAⲠ= U
iii. ĪⲠ= U-Ī = U
iv. UⲠ= U-U = Ī
v. UâA = AÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â [âĩ AâU]
vi. (Bâ˛)Ⲡ= {x âŖ x â (Bâ˛)â˛} = {x âŖ x â Bâ˛} = {x âŖ x â B} = B
Â
4. A = {x âŖ x+8=8}, B = {x âŖ x2=9, 2x = 4}, C = {x âŖ x2-5x+6=0}, D = {x âŖ x2-11x+24=0} āĻšāϞā§, A\B āĻāĻŦāĻ CâD āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
āĻāĻāĻžāύā§, A = {x âŖ x+8=8} = {x âŖ x = 8-8} = {0}
B = {x âŖ x2=9, 2x = 4} = {x âŖ x = Âą3 āĻāĻŦāĻ x = 2} = Ī
C = {x âŖ x2-5x+6=0} = {x âŖ x2-3x-2x+6 = 0} = {x âŖ (x-3)(x-2) = 0}
                                                                                   = {x âŖ x=3 āĻ āĻĨāĻŦāĻž x=2}
                                                                                   = {2,3}
D = {x âŖ x2-11x+24=0} = {x âŖ x2-3x-8x+24=0} = {x âŖ (x-3)(x-8) = 0}
= {x âŖ x=3 āĻ āĻĨāĻŦāĻž x=8}
                                                                                   = {3,8}
â´ A\B = {0}-Ī = {0} = A        [{o} āĻāĻŦāĻ Ī āĻāĻŋāύā§āϤ⧠āĻāĻ āύ⧠āϤāĻž āϞāĻā§āώ āϰāĻžāĻāϤ⧠āĻšāĻŦā§ āĨ¤ Ī = {}, Ī â {0}]
â´ CâD = {3}
Â
5. āϝāĻĻāĻŋ A = {1,2,3}, B = {a,b} āĻšā§ āϤāĻŦā§ AÃB āĻāĻŦāĻ BÃA āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
AB = {(x,y) âŖ x â A āĻāĻŦāĻ y â B} = {(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)}
BA = {(x,y) âŖ x â B āĻāĻŦāĻ y â A} = {(a,1),(b,1),(a,2),(b,2),(a,3),(b,3)}
Â
6. A = {1,2,3} āĻšāϞ⧠A āĻāϰ āĻŽā§āĻ āĻāĻĒāϏā§āĻ āĻā§āĻāĻŋ? P(A) āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
āĻāĻāĻžāύā§, A āĻāϰ āĻāĻĒāĻžāĻĻāĻžāύ āϏāĻāĻā§āϝāĻž n=3 āĨ¤ â´ A āĻāϰ āĻāĻĒāϏā§āĻ āĻšāĻŦā§ 2n = 23 = 8āĻāĻŋ āĨ¤
â´ P(A) = {Ī,{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3}}
Â
7. (x+y, x2+y2) = (2,4) āĻšāϞ⧠x2-y2 āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
āĻāĻāĻžāύā§, x+y = 2
āĻāĻŦāĻ, x
āĻāĻŦāĻžāϰ, x2+y2=4 â (x+y)2-2xy = 4 â 22-2xy = 4 â xy = 0
āĻāĻŦāĻžāϰ, x2+y2=4 â (x2+y2)2 = 16 â (x2-y2)2+4x2y2 = 16
                       â (x2-y2)2+4(xy)2 = 16
                       â (x2-y2)2+0 = 16
                       â x2-y2 = Âą4
Â
8. āĻāĻāĻāĻŋ āĻāĻžāώāĻž āĻļāĻŋāĻā§āώāĻž āĻā§āύā§āĻĻā§āϰ⧠120 āĻāύ āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§ āύāĻŋāĻŽā§āύā§āĻā§āϤ āĻāĻžāώāĻž āĻļāĻŋāĻā§āώāĻž āϞāĻžāĻ āĻāϰ⧠:
65 āĻāύ āĻĢā§āϰā§āĻā§āĻ, 45 āĻāύ āĻāĻžāϰā§āĻŽāĻžāύ, 42 āĻāύ āϰāĻžāĻļāĻŋā§āĻžāύ āĨ¤ 20 āĻāύ āĻĢā§āϰā§āĻā§āĻ āĻ āĻāĻžāϰā§āĻŽāĻžāύ, 25 āĻāύ āĻĢā§āϰā§āĻā§āĻ āĻ āϰāĻžāĻļāĻŋā§āĻžāύ, 15 āĻāύ āĻāĻžāϰā§āĻŽāĻžāύ āĻ āϰāĻžāĻļāĻŋā§āĻžāύ āĻāĻŦāĻ 8 āĻāύ āϤāĻŋāύāĻāĻŋ āĻāĻžāώāĻžāϰ āĻĒā§āϰāϤā§āϝā§āĻāĻāĻŋ āĻ āϧā§āϝā§āύ āĻāϰ⧠āĨ¤ āύāĻŋāϰā§āĻŖā§ āĻāϰ :
i. āĻāϤāĻāύ āĻ āύā§āϤāϤ āĻāĻāĻāĻŋ āĻāĻžāώāĻž āĻ āϧā§āϝā§āύ āĻāϰā§?
ii. āĻāϤāĻāύ āĻāĻžāϰā§āĻŽāĻžāύ āĻ āϰāĻžāĻļāĻŋā§āĻžāύ āĻāĻžāώāĻž āĻ āϧā§āϝā§āύ āĻāϰ⧠āĨ¤ āĻāĻŋāύā§āϤ⧠āĻĢā§āϰā§āĻā§āĻ āĻ āϧā§āϝā§āύ āĻāϰ⧠āύāĻž?
iii. āĻāϤāĻāύ āϰāĻžāĻļāĻŋā§āĻžāύ āĻ āĻĢā§āϰā§āĻā§āĻ āĻ āϧā§āϝā§āύ āĻāϰ⧠āĻāĻŋāύā§āϤ⧠āĻāĻžāϰā§āĻŽāĻžāύ āĻ āϧā§āϝā§āύ āĻāϰ⧠āύāĻž?
iv. āĻāϤāĻāύ āĻĢā§āϰā§āĻā§āĻ āĻ āĻāĻžāϰā§āĻŽāĻžāύ āĻ āϧā§āϝā§āύ āĻāϰ⧠āĻāĻŋāύā§āϤ⧠āϰāĻžāĻļāĻŋā§āĻžāύ āĻ āϧā§āϝā§āύ āĻāϰ⧠āύāĻž?
v. āĻāϤāĻāύ āĻļā§āϧ⧠āϰāĻžāĻļāĻŋā§āĻžāύ āĻ āϧā§āϝā§āύ āĻāϰā§?
vi. āĻāϤāĻāύ āĻļā§āϧ⧠āĻĢā§āϰā§āĻā§āĻ āĻ āϧā§āϝā§āύ āĻāϰā§?
vii. āĻāϤāĻāύ āĻā§āύ āĻāĻžāώāĻžāĻ āĻ āϧā§āϝā§āύ āĻāϰ⧠āύāĻž?
viii. āĻāϤāĻāύ āĻā§āύ āĻāĻžāώāĻžāĻ āĻ āϧā§āϝā§āύ āĻāϰ⧠āύāĻž?
ix. āĻāϤāĻāύ āĻ āĻŋāĻ āĻāĻāĻāĻŋ āĻāĻžāώāĻž āĻ āϧā§āϝā§āύ āĻāϰā§?
x. āĻāϤāĻāύ āĻ āĻŋāĻ āĻĻā§āĻāĻŋ āĻāĻžāώāĻž āĻ āϧā§āϝā§āύ āĻāϰā§?
Â
āĻāĻāĻžāύā§, āĻŽā§āĻ āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§, n(S) = 120
āĻĢā§āϰā§āĻā§āĻ āĻāĻžāώāĻž āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§, n(F) = 65
āĻāĻžāϰā§āĻŽāĻžāύ āĻāĻžāώāĻž āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§, n(G) = 45
āϰāĻžāĻļāĻŋā§āĻžāύ āĻāĻžāώāĻž āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§, n(R) = 42
āĻĢā§āϰā§āĻā§āĻ āĻ āĻāĻžāϰā§āĻŽāĻžāύ āĻāĻžāώāĻž āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§, n(FâG) = 20
āĻĢā§āϰā§āĻā§āĻ āĻ āϰāĻžāĻļāĻŋā§āĻžāύ āĻāĻžāώāĻž āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§, n(FâR) = 25
āĻāĻžāϰā§āĻŽāĻžāύ āĻ āϰāĻžāĻļāĻŋā§āĻžāύ āĻāĻžāώāĻž āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§, n(GâR) = 15
āϤāĻŋāύāĻāĻŋ āĻāĻžāώāĻžāϰ āĻĒā§āϰāϤā§āϝā§āĻāĻāĻŋāϰ āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§, n(FâGâR) = 8
i. āĻ āύā§āϤāϤāĻ āĻāĻāĻāĻŋ āĻāĻžāώāĻž āĻ āϧā§āϝā§āύ āĻāϰ⧠āĻāĻŽāύ āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§āϰ āϏāĻāĻā§āϝāĻž
= āĻāĻ āĻŦāĻž āĻāĻāĻžāϧāĻŋāĻ āĻāĻžāώāĻž āĻ āϧā§āϝā§āύāĻāĻžāϰ⧠āĻļāĻŋāĻā§āώāĻžāϰā§āĻĨā§āϰ āϏāĻāĻā§āϝāĻž
= n(FâGâR)
= n(F)+n(G)+n(R)-n(FâG)-n(FâR)-n(GâR)+n(FâGâR)
= 100
ii. n(GâR)-n(FâGâR) = 7
iii. n(FâR)-n(FâGâR) = 17
iv. n(FâG)-n(FâGâR) = 12
v. n(R)-n(FâR)-n(GâR)+n(FâGâR) = 10
vi. n(G)-n(GâR)-n(FâG)+n(FâGâR) = 18
vii. n(F)-n(FâR)-n(FâG)+n(FâGâR) = 28
viii. n(S)-n(FâGâR) = 10
ix. āĻ āĻŋāĻ āĻāĻāĻāĻŋ āĻāĻžāώāĻž āĻ āϧā§āϝā§āύ āĻāϰ⧠= āĻļā§āϧ⧠āϰāĻžāĻļāĻŋā§āĻžāύ āĻ āϧā§āϝā§āύ āĻāϰ⧠+ āĻļā§āϧ⧠āĻāĻžāϰā§āĻŽāĻžāύ āĻ āϧā§āϝā§āύ āĻāϰ⧠+ āĻļā§āϧ⧠āĻĢā§āϰā§āĻā§āĻ āĻ āϧā§āϝā§āύ āĻāϰā§
                                               = 56
x. āĻ āĻŋāĻ āĻĻā§āĻāĻŋ āĻāĻžāώāĻž āĻ āϧā§āϝā§āύ āĻāϰ⧠= āĻāĻžāϰā§āĻŽāĻžāύ āĻ āϰāĻžāĻļāĻŋā§āĻžāύ āĻ āϧā§āϝā§āύ āĻāϰā§, āĻāĻŋāύā§āϤ⧠āĻĢā§āϰā§āĻā§āĻ āĻ āϧā§āϝā§āύ āĻāϰ⧠āύāĻž + āĻĢā§āϰā§āĻā§āĻ āĻ āϰāĻžāĻļāĻŋā§āĻžāύ āĻ āϧā§āϝā§āύ āĻāϰā§, āĻāĻŋāύā§āϤ⧠āĻāĻžāϰā§āĻŽāĻžāύ āĻ āϧā§āϝā§āύ āĻāϰ⧠āύāĻž + āĻĢā§āϰā§āĻā§āĻ āĻ āĻāĻžāϰā§āĻŽāĻžāύ āĻ āϧā§āϝā§āύ āĻāϰā§, āĻāĻŋāύā§āϤ⧠āϰāĻžāĻļāĻŋā§āĻžāύ āĻ āϧā§āϝā§āύ āĻāϰ⧠āύāĻž
                                               = 36
Â
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ āĻ āϏāĻŽāĻžāϧāĻžāύÂ
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ :
1. āĻā§āύ⧠āϏā§āĻā§āϞ⧠120 āĻāύ āĻāĻžāϤā§āϰā§āϰ āĻŽāϧā§āϝ⧠75 āĻāύ āĻŦāĻžāĻāϞāĻž āĻāĻžāώāĻžā§ āĻāĻŦāĻ 60 āĻāύ āĻāĻāϰā§āĻāĻŋ āĻāĻžāώāĻžā§ āĻāĻĨāĻž āĻŦāϞāϤ⧠āĻĒāĻžāϰ⧠āĨ¤ āĻāϤāĻāύ āĻāĻā§ āĻāĻžāώāĻžā§ āĻāĻĨāĻž āĻŦāϞāϤ⧠āĻĒāĻžāϰā§?               [DU : 2001-02]
a. 35
b. 10
c. 15
d. 20
Â
2. āĻāĻāĻāĻŋ āĻā§āϞāĻžāĻļā§āϰ 120 āĻāύ āĻāĻžāϤā§āϰ; āϏāĻāϞā§āĻ āĻā§āϰāĻŋāĻā§āĻ āĻ āĻĨāĻŦāĻž āĻĢā§āĻāĻŦāϞ āĻ āĻĨāĻŦāĻž āĻāĻā§āĻ āĻā§āϞ⧠āĨ¤75 āĻāύ āĻā§āϰāĻŋāĻā§āĻ āĻāĻŦāĻ 60 āĻāύ āĻĢā§āĻāĻŦāϞ āĻā§āϞ⧠āĨ¤ āĻāϤāĻāύ āĻāĻā§āĻ āĻā§āϞā§-                 [DU : 2002-03]
a. 13
b. 15
c. 25
d. 23
Â
3. āύāĻŋāĻā§āϰ āĻā§āύāĻāĻŋ āϏāϤā§āϝ āĻāĻā§āϤāĻŋ?                     [DU : 2002-03]
a. A\B = AâBâ˛
b. A\B = AâBâ˛
c. A\B = Aâ˛âB
d. A\B = Aâ˛âB
Â
4. (x+y,x2+y2) = (2,4) āĻšāϞ⧠x2-y2 āĻāϰ āĻŽāĻžāύ-                     [DU : 2003-04]
a. Âą2
b. Âą4
c. Âą6
d. Âą8
Â
āϏāĻŽāĻžāϧāĻžāύ:Â
1. n(BâE) = n(B)+n(E)-n(BâE)
                       = 75+60-120               [see example 8 for details]
                       = 15
ans. c
Â
2. n(CâF) = n(C)+n(F)-n(CâF)
                       = 15                [see example 8 for details]
ans. b
Â
3. A\B = {x âŖ x â A āĻāĻŦāĻ x â B}
           = {x âŖ x â A āĻāĻŦāĻ x â Bâ˛}
           = AâBâ˛
ans. a
Â
4. x2+y2 = 4Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â [see example 7 for details]
â (x+y)2-2xy = 4
â xy = 0
āĻāĻŦāĻžāϰ, (x2+y2)2 = (x2-y2)2+4x2y2 = 16
           â x2-y2 = 4
ans. b
Â
Â