āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ
θ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ = Îą āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ
$\sin \theta=\sin \alpha \Rightarrow \theta=n \pi+(-1)^{n} \alpha$
$\cos \theta=\cos \alpha \Rightarrow \theta=2 n \pi \pm \alpha$
$\tan \theta=\tan \alpha \Rightarrow \theta=n \pi+\alpha$
āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ: θ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ = 0
$\begin{aligned} \sin \theta &=0 \Rightarrow \theta=n \pi \\ \cos \theta=0 & \Rightarrow \theta=(2 n+1) \frac{\pi}{2} \\ \tan \theta &=0 \Rightarrow \theta=n \pi \end{aligned}$
āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ: θ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤ = Âą 1
$\sin \theta=1 \Rightarrow \theta=(4 n+1) \frac{\pi}{2} ; \sin \theta=-1 \Rightarrow \theta=(4 n-1) \frac{\pi}{2}$
$\cos \theta=1 \Rightarrow \theta=2 n \pi ; \cos \theta=-1 \Rightarrow \theta=(2 n+1) \pi$
$\tan \theta=1 \Rightarrow \theta=n \pi+\frac{\pi}{4} ; \tan \theta=-1 \Rightarrow \theta=n \pi-\frac{\pi}{4}$
āĻāĻĻāĻžāĻšāϰāĻŖ 1. āϏāĻŽāĻžāϧāĻžāύ āĻāϰ: $\cos \theta+\sqrt{3} \sin \theta=\sqrt{2}$
āϏāĻŽāĻžāϧāĻžāύ:
āĻĒāĻĻā§āϧāϤāĻŋ 1:
āĻĒā§āϰāĻĨāĻŽā§ āĻĒā§āϰāĻĻāϤā§āϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻ āύā§āĻĒāĻžāϤāĻā§āϞā§āĻā§ āĻāĻ āĻāĻžāϤā§ā§ āĻ āύā§āĻĒāĻžāϤ⧠āϰā§āĻĒāĻžāύā§āϤāϰāĻŋāϤ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤ āĻāϰāĻĒāϰ āϏāĻŦāĻā§āϞ⧠āϰāĻžāĻļāĻŋ āĻŦāĻžāĻŽāĻĒāĻā§āώ⧠āĻāύ⧠āĻā§āĻĒāĻžāĻĻāĻā§ āĻŦāĻŋāĻļā§āϞā§āώāĻŖ āĻāϰ⧠āĻāĻŋāĻāĻŦāĻž āĻĻā§āĻŦāĻŋāĻāĻžāϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻŽā§āϞā§āϰ āϏā§āϤā§āϰ āĻĒā§āϰā§ā§āĻ āĻāϰ⧠āϏāĻŽāĻžāϧāĻžāύ āĻāϰāϤ⧠āĻšāĻŦā§āĨ¤ āĻāĻā§āώā§āϤā§āϰā§,
$\cos \theta+\sqrt{3} \sin \theta=\sqrt{2}$
$\Rightarrow \cos \theta-\sqrt{2}=-\sqrt{3} \sin \theta$
$\Rightarrow(\cos \theta)^{2}-2 \cdot \cos \theta \cdot \sqrt{2}+(\sqrt{2})^{2}=(-\sqrt{3} \sin \theta)^{2}$ [āĻāĻā§āĻĒāĻā§āώāĻā§ āĻŦāϰā§āĻ āĻāϰā§]
$\Rightarrow \cos ^{2} \theta-2 \sqrt{2} \cos \theta+2=3 \sin ^{2} \theta$
$\Rightarrow \cos ^{2} \theta-2 \sqrt{2} \cos \theta+2=3\left(1-\cos ^{2} \theta\right) \quad\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \cos ^{2} \theta+3 \cos ^{2} \theta-2 \sqrt{2} \cos \theta+2-3=0$
$\Rightarrow 4 \cos ^{2} \theta-2 \sqrt{2} \cos \theta-1=0$
$\therefore \cos \theta$
$=\frac{2 \sqrt{2} \pm \sqrt{(2 \sqrt{2})^{2}-4.4(-1)}}{2.4}$
$=\frac{2 \sqrt{2} \pm \sqrt{8+16}}{8}$
$=\frac{2 \sqrt{2} \pm \sqrt{4 \times 6}}{8}$
$=\frac{2 \sqrt{2} \pm 2 \sqrt{2 \times 3}}{8}$
$=\frac{2 \sqrt{2} \pm 2 \sqrt{2} \sqrt{3}}{4 \sqrt{2} \sqrt{2}}$
$=\frac{2 \sqrt{2}(1 \pm \sqrt{3})}{4 \sqrt{2} \sqrt{2}}$
$=\frac{1 \pm \sqrt{3}}{2 \sqrt{2}}$
āĻšā§,
$\cos \theta=\frac{1+\sqrt{3}}{2 \sqrt{2}}$
$\Rightarrow \cos \theta=\cos \frac{\pi}{12}$
$\Rightarrow \theta=2 n \pi \pm \frac{\pi}{12}$
Â
āĻ āĻĨāĻŦāĻž,
$\cos \theta=\frac{1-\sqrt{3}}{2 \sqrt{2}}$
$\Rightarrow \cos \theta=\cos \frac{7 \pi}{12}$
$\Rightarrow \theta=2 n \pi \pm \frac{7 \pi}{12}$
Â
āĻāϤ āĻĄāĻŋāĻā§āϰ⧠āĻā§āĻŖā§āϰ cos āĻ āύā§āĻĒāĻžāϤā§āϰ āĻŽāĻžāύ $\frac{1+\sqrt{3}}{2 \sqrt{2}}$ āĻŦāĻž $\frac{1-\sqrt{3}}{2 \sqrt{2}}$ āϤāĻž Calculator āĻāϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ inverse āĻĢāĻžāĻāĻļāύ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻāϰ⧠āĻŦā§āϰ āĻāϰāĻž āϝāĻžā§āĨ¤
â´Â $\theta=2 \mathrm{n} \pi \pm \frac{\pi}{12}$Â
āĻāĻŦāĻ $2 n \pi \pm \frac{7 \pi}{12}$
āĻāĻŋāύā§āϤā§, $2 n \pi-\frac{\pi}{12}$ āĻāĻŦāĻ $2 n \pi-\frac{7 \pi}{12}$ āĻāϰ āĻāύā§āϝ θ āĻāϰ āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻžāĻšā§āϰ āĻ āĻŦāϏā§āĻĨāĻžāύ āĻšā§ āĻāϤā§āϰā§āĻĨ āĻāϤā§āϰā§āĻāĻžāĻā§ āϝā§āĻāĻžāύ⧠sin āĻ āύā§āĻĒāĻžāϤ āĻāĻŖāĻžāϤā§āĻŽāĻāĨ¤ $2 \mathrm{n} \pi-\frac{\pi}{12}$ āĻāĻŦāĻ $2 n \pi-\frac{7 \pi}{12}$  āĻŽā§āϞ āĻĻā§āĻāĻāĻŋ āĻŽā§āϞāϤ $\cos \theta-\sqrt{3} \sin \theta=\sqrt{2}$ āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻŽāĻžāϧāĻžāύ āϝāĻž āĻĒā§āϰāĻĻāϤā§āϤ āϏāĻŽā§āĻāϰāĻŖāĻā§ āĻŦāϰā§āĻ āĻāϰāĻžāϰ āĻĢāϞ⧠āϏāĻŽāĻžāϧāĻžāύā§āϰ āĻ āύā§āϤāϰā§āĻā§āĻā§āϤ āĻšā§ā§āĻā§āĨ¤
â´ āύāĻŋāϰā§āĻŖā§ā§ āϏāĻŽāĻžāϧāĻžāύ: $\theta=2 n \pi+\frac{\pi}{12}, 2 n \pi+\frac{7 \pi}{12}$
āĻĒāĻĻā§āϧāϤāĻŋ 2:
āϏāĻŽā§āĻāϰāĻŖā§āϰ āĻāĻā§āĻĒāĻā§āώāĻā§ cos θ āĻ sin θ āĻāϰ āϏāĻšāĻā§āϰ āĻŦāϰā§āĻāĻŽā§āϞ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰāϞ⧠āύāϤā§āύ āϏāĻšāĻ āĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāĻŽā§āĻāϰāĻŖ āĻĒāĻžāĻā§āĻž āϝāĻžā§āĨ¤ cos θ āĻāϰ āϏāĻšāĻāĻā§ āĻāύā§āώāĻā§āĻāĻŋāĻ cos āĻ āύā§āĻĒāĻžāϤā§āϰ āĻāĻŦāĻ sin θ āĻāϰ āϏāĻšāĻāĻā§ āĻāύā§āώāĻā§āĻāĻŋāĻ sin āĻ āύā§āĻĒāĻžāϤ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāϤāĻŋāϏā§āĻĨāĻžāĻĒāĻŋāϤ āĻāϰ⧠āϝā§āĻāĻŋāĻ āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤā§āϰ āϏā§āϤā§āϰ āĻĒā§āϰā§ā§āĻ āĻāϰāϞ⧠āĻŦāĻžāĻŽāĻĒāĻā§āώ⧠āĻļā§āϧā§āĻŽāĻžāϤā§āϰ cos āĻ āύā§āĻĒāĻžāϤ āĻ āĻŦāĻļāĻŋāώā§āĻ āĻĨāĻžāĻā§āĨ¤ āĻĄāĻžāύāĻĒāĻā§āώ⧠āĻāύā§āώāĻā§āĻāĻŋāĻ cos āĻ āύā§āĻĒāĻžāϤ āĻŦāϏāĻŋā§ā§ cos āĻāϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύā§āϰ āϏā§āϤā§āϰ āĻĒā§āϰā§ā§āĻ āĻāϰāϞ⧠āĻĒā§āϰāĻĻāϤā§āϤ āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžā§āĨ¤ āĻāĻā§āώā§āϤā§āϰā§,
cos θ āĻāϰ āϏāĻšāĻ = 1
sin θ āĻāϰ āϏāĻšāĻ = $\sqrt{3}$
â´ āϏāĻšāĻāĻĻā§āĻŦā§ā§āϰ āĻŦāϰā§āĻā§āϰ āϝā§āĻāĻĢāϞā§āϰ āĻŦāϰā§āĻāĻŽā§āϞ = $\sqrt{(1)^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=\sqrt{4}=2$
āϏā§āϤāϰāĻžāĻ āĻĒā§āϰāĻĻāϤā§āϤ āϏāĻŽā§āĻāϰāĻŖ:
$\cos \theta+\sqrt{3} \sin \theta=\sqrt{2}$
$\Rightarrow \frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta=\frac{\sqrt{2}}{2}$Â
[āĻāĻā§āĻĒāĻā§āώāĻā§ 2 āĻĻā§āĻŦāĻžāϰāĻž āĻāĻžāĻ āĻāϰā§]
$\Rightarrow \cos \theta \cos \frac{\pi}{3}+\sin \theta \sin \frac{\pi}{3}=\frac{\sqrt{2}}{\sqrt{2} \times \sqrt{2}}$ [0°, 30°, 45°, 60° āĻ 90° āĻā§āĻŖā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤāĻā§āϞā§āϰ āĻŽāĻžāύ]
$\Rightarrow \cos \left(\theta-\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}}$Â
[cos (A â B) = cos A cos B + sin A sin B]
$\Rightarrow \cos \left(\theta-\frac{\pi}{3}\right)=\cos \frac{\pi}{4}$
$\Rightarrow \theta-\frac{\pi}{3}=2 \mathrm{n} \pi \pm \frac{\pi}{4}$Â
[cos θ = cos Îą āĻšāĻ˛ā§ Î¸ = 2nĪ Âą Îą]
āĻšā§,
$\theta-\frac{\pi}{3}=2 \mathrm{n} \pi+\frac{\pi}{4} \Rightarrow \theta=2 \mathrm{n} \pi+\frac{\pi}{4}+\frac{\pi}{3}=2 \mathrm{n} \pi+\frac{7 \pi}{12}$
āĻ āĻĨāĻŦāĻž,
$\theta-\frac{\pi}{3}=2 \mathrm{n} \pi-\frac{\pi}{4} \Rightarrow \theta=2 \mathrm{n} \pi-\frac{\pi}{4}+\frac{\pi}{3}=2 \mathrm{n} \pi+\frac{\pi}{12}$
āĻāĻĻāĻžāĻšāϰāĻŖ 2. āϏāĻŽāĻžāϧāĻžāύ āĻāϰ: cos x + sin x = cos 2x + sin 2x
āϏāĻŽāĻžāϧāĻžāύ:
āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤā§āϰ āϝā§āĻāĻĢāϞāϰā§āĻĒā§ āĻā§āĻŖā§āϰ āĻā§āĻŖāĻŋāϤāĻ āĻĨāĻžāĻāϞ⧠āϏā§āϤā§āϰ āĻĒā§āϰā§ā§āĻ āĻāϰ⧠āϤāĻžāĻĻā§āϰ āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤā§āϰ āĻā§āĻŖāĻĢāϞāϰā§āĻĒā§ āĻĒā§āϰāĻāĻžāĻļ āĻāϰ⧠āĻ āϧāĻŋāĻāĻžāĻāĻļ āϏāĻŽā§ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĻž āϝāĻžā§āĨ¤ āĻāĻā§āώā§āϤā§āϰā§,
$\cos x+\sin x=\cos 2 x+\sin 2 x$
$\Rightarrow \cos x-\cos 2 x=\sin 2 x-\sin x$
$\Rightarrow 2 \sin \frac{x+2 x}{2} \sin \frac{2 x-x}{2}=2 \cos \frac{2 x+x}{2} \sin \frac{2 x-x}{2}$ [āϤā§āϰāĻŋāĻā§āĻŖāĻŽāĻŋāϤāĻŋāĻ āĻ āύā§āĻĒāĻžāϤā§āϰ āϝā§āĻ āĻŦāĻž āĻŦāĻŋā§ā§āĻāĻĢāϞ āĻā§āĻŖāĻĢāϞ⧠āϰā§āĻĒāĻžāύā§āϤāϰ]
$\Rightarrow \sin \frac{3 x}{2} \sin \frac{x}{2}=\cos \frac{3 x}{2} \sin \frac{x}{2}$
$\Rightarrow \sin \frac{3 x}{2} \sin \frac{x}{2}-\cos \frac{3 x}{2} \sin \frac{x}{2}=0$
$\Rightarrow \sin \frac{x}{2}\left(\sin \frac{3 x}{2}-\cos \frac{3 x}{2}\right)=0$
āĻšā§,
$\sin \frac{x}{2}=0$
$\Rightarrow \frac{\mathrm{x}}{2}=\mathrm{n} \pi$ [sin θ = 0 āĻšāĻ˛ā§ Î¸ = nĪ]
â´ x = 2nĪ
āĻ āĻĨāĻŦāĻž,
$\sin \frac{3 x}{2}-\cos \frac{3 x}{2}=0$
$\Rightarrow \sin \frac{3 x}{2}=\cos \frac{3 x}{2}$
$\Rightarrow \frac{\sin \frac{3 x}{2}}{\cos \frac{3 x}{2}}=1$
$\Rightarrow \tan \frac{3 x}{2}=1$
Â
$\Rightarrow \frac{3 \mathrm{x}}{2}=\mathrm{n} \pi+\frac{\pi}{4}$Â
[tan θ = 1 āĻšāϞā§Â $\theta=\mathrm{n} \pi+\frac{\pi}{4}$Â
]
â´Â $\mathrm{x}=\frac{2}{3}\left(\mathrm{n} \pi+\frac{\pi}{4}\right)$
āĻāĻĻāĻžāĻšāϰāĻŖ 3. āϏāĻŽāĻžāϧāĻžāύ āĻāϰ: cot θ + tan θ = 2 sec θ
āϏāĻŽāĻžāϧāĻžāύ:
āϏāĻŽā§āĻāϰāĻŖā§ tan, cot, sec, cosec āĻāĻāϏāĻžāĻĨā§ āĻĨāĻžāĻāϞ⧠āϤāĻžāĻĻā§āϰ āϝāĻĨāĻžāĻā§āϰāĻŽā§ $\frac{\sin }{\cos }, \frac{\cos }{\sin }, \frac{1}{\cos }, \frac{1}{\sin }$ āĻ āϰā§āĻĒāĻžāύā§āϤāϰāĻŋāϤ āĻāϰāϞ⧠āĻ āύā§āĻ āĻā§āώā§āϤā§āϰā§āĻ āϏāĻŽāĻžāϧāĻžāύ āϏāĻšāĻāϤāϰ āĻšā§āĨ¤ āĻāĻā§āώā§āϤā§āϰā§,
$\cot \theta+\tan \theta=2 \sec \theta$
$\Rightarrow \frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}=2 \frac{1}{\cos \theta}$
$\Rightarrow \frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cos \theta}=2 \frac{1}{\cos \theta}$
$\Rightarrow \frac{1}{\sin \theta}=2$
$\Rightarrow \sin \theta=\frac{1}{2}$
$\Rightarrow \sin \theta=\sin \frac{\pi}{6}$
Â
â´ $\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}$ [sin θ = sin Îą āĻšāĻ˛ā§ Î¸ = $\theta=n \pi+(-1)^{\mathrm{n}} \alpha$ ]
Â
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ
1. $4\left(\sin ^{2} \theta+\cos \theta\right)=5$ āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ â
[DU 2003-2004, 2009-2010]
(A) $2 \mathrm{n} \pi \pm \frac{\pi}{2}$
(B) $2 \mathrm{n} \pi \pm \frac{\pi}{3}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{4}$
(D) $2 \mathrm{n} \pi \pm \frac{\pi}{5}$
Â
2. $4\left(\sin ^{2} \theta+\cos \theta\right)=5$ āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ â
[DU 2004-2005, 2011-2012]
(A) $\theta=2 \mathrm{n} \pi-\frac{\pi}{3}$
(B) $\theta=2 \mathrm{n} \pi+\frac{\pi}{6}$
(C) $\theta=2 \mathrm{n} \pi+\frac{\pi}{3}$
(D) $\theta=2 \mathrm{n} \pi-\frac{\pi}{4}$
3. cot x â tan x = 2 āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ â
[DU 2005-2006]
(A) $\frac{\mathrm{n} \pi}{4}$
(B) $\frac{\mathrm{n} \pi}{2}$
(C) $\frac{(4 n+1) \pi}{8}$
(D) $\frac{(4 \mathrm{n}+1) \pi}{2}$
4. $2(\cos x+\sec x)=5$ āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ â
[DU 2006-2007]
(A) $n \pi \pm \frac{\pi}{3}$
(B) $2 \mathrm{n} \pi \pm \frac{\pi}{3}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$
(D) $n \pi \pm \frac{\pi}{6}$
Â
5. $2 \cos ^{2} \theta+2 \sqrt{2} \sin \theta=3$ āĻšāĻ˛ā§ Î¸ āĻāϰ āĻŽāĻžāύ â
[DU 2007-2008]
(A) $30^{\circ}$
(B) $45^{\circ}$
(C) $60^{\circ}$
(D) $135^{\circ}$
6. $2 \cos \theta=1$ āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ â
[DU 2008-2009]
(A) $\theta=\mathrm{n} \pi+\frac{\pi}{3}$
(B) $\theta=2 \mathrm{n} \pi \pm \frac{\pi}{6}$
(C) $\theta=2 \mathrm{n} \pi+\frac{\pi}{6}$
(D) $\theta=2 \mathrm{n} \pi \pm \frac{\pi}{3}$
7. $\sin ^{2} 2 \theta-3 \cos ^{2} \theta=0$ āϏāĻŽā§āĻāϰāĻŖā§āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ â
[DU 2010-2011]
(A) $2 \mathrm{n} \pi \pm \frac{\pi}{3}$
(B) $n \pi \pm \frac{\pi}{3}$
(C) $n \pi \pm \frac{\pi}{6}$
(D) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$
āϏāĻŽāĻžāϧāĻžāύ
1.
$4\left(\sin ^{2} \theta+\cos \theta\right)=5$
$\Rightarrow 4 \sin ^{2} \theta+4 \cos \theta=5$
$\Rightarrow 4\left(1-\cos ^{2} \theta\right)+4 \cos \theta=5$
$\Rightarrow 4-4 \cos ^{2} \theta+4 \cos \theta=5$
$\Rightarrow 4 \cos ^{2} \theta-4 \cos \theta+1=0$
$\Rightarrow(2 \cos \theta-1)^{2}=0$
$\Rightarrow 2 \cos \theta-1=0$
$\Rightarrow \cos \theta=\frac{1}{2}=\cos \frac{\pi}{3}$
â´Â $\theta=2 n \pi \pm \frac{\pi}{3}$Â
[cos θ = cos Îą āĻšāĻ˛ā§ Î¸ = 2nĪ Âą Îą]
â´ Answer: (B)
2.
[āĻāĻĻāĻžāĻšāϰāĻŖ 1 āĻĻā§āϰāώā§āĻāĻŦā§āϝ]
$\cos \theta+\sqrt{3} \sin \theta=2$
$\Rightarrow \frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta=1$
$\Rightarrow \cos \frac{\pi}{3} \cos \theta+\sin \frac{\pi}{3} \sin \theta=1$
$\Rightarrow \cos \left(\theta-\frac{\pi}{3}\right)=1$
$\Rightarrow \theta-\frac{\pi}{3}=2 n \pi$ [cos θ = 1 āĻšāĻ˛ā§ Î¸ = 2nĪ]
$\therefore \theta=2 \mathrm{n} \pi+\frac{\pi}{3}$
â´ Answer: (C)
3.
$\cot x-\tan x=2$
$\Rightarrow \frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}=2$
$\Rightarrow \frac{\cos ^{2} x-\sin ^{2} x}{\sin x \cos x}=2$
$\Rightarrow \frac{\cos 2 x}{2 \sin x \cos x}=1$
$\Rightarrow \frac{\cos 2 x}{\sin 2 x}=1$
$\Rightarrow \tan 2 x=1$
$\Rightarrow 2 \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}$
[tan θ = 1 āĻšāϞ⧠$\theta=\mathrm{n} \pi+\frac{\pi}{4}$ ]
$\Rightarrow 2 \mathrm{x}=\frac{4 \mathrm{n} \pi+\pi}{4}$
$\therefore \mathrm{x}=\frac{(4 \mathrm{n}+1) \pi}{8}$
â´ Answer: (C)
4.
$2(\cos x+\sec x)=5$
$\Rightarrow 2 \cos x+\frac{2}{\cos x}=5$
$\Rightarrow \frac{2 \cos ^{2} x+2}{\cos x}=5$
$\Rightarrow 2 \cos ^{2} x+2=5 \cos x$
$\Rightarrow 2 \cos ^{2} x-5 \cos x+2=0$
$\Rightarrow 2 \cos ^{2} x-4 \cos x-\cos x+2=0$
$\Rightarrow 2 \cos x(\cos x-2)-1(\cos x-2)=0$
$\Rightarrow(\cos x-2)(2 \cos x-1)=0$
āĻšā§,
cos x â 2 = 0
â cos x = 2 āϝāĻž āĻ āϏāĻŽā§āĻāĻŦ āĻā§āύāύāĻž, â 1 ⤠cos x ⤠1
āĻ āĻĨāĻŦāĻž,
$2 \cos x-1=0$
$\Rightarrow \cos x=\frac{1}{2}=\cos \frac{\pi}{3}$
â´Â $x=2 n \pi \pm \frac{\pi}{3}$Â
[cos θ = cos Îą āĻšāĻ˛ā§ Î¸ = 2nĪ Âą Îą]
â´ Answer: (C)
5.
$2 \cos ^{2} \theta+2 \sqrt{2} \sin \theta=3$
$\Rightarrow 2\left(1-\sin ^{2} \theta\right)+2 \sqrt{2} \sin \theta=3$
$\Rightarrow 2-2 \sin ^{2} \theta+2 \sqrt{2} \sin \theta=3$
$\Rightarrow 2 \sin ^{2} \theta-2 \sqrt{2} \sin \theta+1=0$
$\Rightarrow(\sqrt{2} \sin \theta-1)^{2}=0$
$\Rightarrow \sqrt{2} \sin \theta-1=0$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}=\sin \frac{\pi}{4}$
$\therefore \theta=\frac{\pi}{4}=45^{\circ}$
â´ Answer: (B)
6.
$2 \cos \theta=1$
$\Rightarrow \cos \theta=\frac{1}{2}=\cos \frac{\pi}{3}$
$\therefore \theta=2 \mathrm{n} \pi \pm \frac{\pi}{3}$Â
[cos θ = cos Îą āĻšāĻ˛ā§ Î¸ = 2nĪ Âą Îą]
â´ Answer: (D)
7.
$\sin ^{2} 2 \theta-3 \cos ^{2} \theta=0$
$\Rightarrow(\sin 2 \theta)^{2}-3 \cos ^{2} \theta=0$
$\Rightarrow(2 \sin \theta \cos \theta)^{2}-3 \cos ^{2} \theta=0$
$\Rightarrow 4 \sin ^{2} \theta \cos ^{2} \theta-3 \cos ^{2} \theta=0$
$\Rightarrow \cos ^{2} \theta\left(4 \sin ^{2} \theta-3\right)=0$
āĻšā§,
$\cos ^{2} \theta=0$
$\Rightarrow \cos \theta=0$
$\therefore \theta=(2 n+1) \frac{\pi}{2}$Â
[cos θ = 0 āĻšāĻ˛ā§ Î¸ = (2n + 1)
]
āĻ āĻĨāĻŦāĻž,
$4 \sin ^{2} \theta-3=0$
$\Rightarrow \sin ^{2} \theta=\frac{3}{4}$
$\Rightarrow \sin \theta=\frac{\sqrt{3}}{2}=\sin \frac{\pi}{3}$
$\Rightarrow \theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{3}$ [sin θ = sin Îą āĻšāϞ⧠$\theta=n \pi+(-1)^{n} \alpha$ ]
â´ Answer: (B)