āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ

θ āϕ⧋āϪ⧇āϰ āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• āĻ…āύ⧁āĻĒāĻžāϤ = Îą āϕ⧋āϪ⧇āϰ āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• āĻ…āύ⧁āĻĒāĻžāϤ

$\sin \theta=\sin \alpha \Rightarrow \theta=n \pi+(-1)^{n} \alpha$
$\cos \theta=\cos \alpha \Rightarrow \theta=2 n \pi \pm \alpha$
$\tan \theta=\tan \alpha \Rightarrow \theta=n \pi+\alpha$

āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ: θ āϕ⧋āϪ⧇āϰ āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• āĻ…āύ⧁āĻĒāĻžāϤ = 0

$\begin{aligned} \sin \theta &=0 \Rightarrow \theta=n \pi \\ \cos \theta=0 & \Rightarrow \theta=(2 n+1) \frac{\pi}{2} \\ \tan \theta &=0 \Rightarrow \theta=n \pi \end{aligned}$

āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ: θ āϕ⧋āϪ⧇āϰ āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• āĻ…āύ⧁āĻĒāĻžāϤ = Âą 1

$\sin \theta=1 \Rightarrow \theta=(4 n+1) \frac{\pi}{2} ; \sin \theta=-1 \Rightarrow \theta=(4 n-1) \frac{\pi}{2}$
$\cos \theta=1 \Rightarrow \theta=2 n \pi ; \cos \theta=-1 \Rightarrow \theta=(2 n+1) \pi$
$\tan \theta=1 \Rightarrow \theta=n \pi+\frac{\pi}{4} ; \tan \theta=-1 \Rightarrow \theta=n \pi-\frac{\pi}{4}$

āωāĻĻāĻžāĻšāϰāĻŖ 1. āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰ: $\cos \theta+\sqrt{3} \sin \theta=\sqrt{2}$

āϏāĻŽāĻžāϧāĻžāύ:

āĻĒāĻĻā§āϧāϤāĻŋ 1:

āĻĒā§āϰāĻĨāĻŽā§‡ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻ…āύ⧁āĻĒāĻžāϤāϗ⧁āϞ⧋āϕ⧇ āĻāĻ• āϜāĻžāĻ¤ā§€ā§Ÿ āĻ…āύ⧁āĻĒāĻžāϤ⧇ āϰ⧂āĻĒāĻžāĻ¨ā§āϤāϰāĻŋāϤ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻāϰāĻĒāϰ āϏāĻŦāϗ⧁āϞ⧋ āϰāĻžāĻļāĻŋ āĻŦāĻžāĻŽāĻĒāĻ•ā§āώ⧇ āĻāύ⧇ āĻ‰ā§ŽāĻĒāĻžāĻĻāϕ⧇ āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ āĻ•āϰ⧇ āĻ•āĻŋāĻ‚āĻŦāĻž āĻĻā§āĻŦāĻŋāϘāĻžāϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āĻŽā§‚āϞ⧇āϰ āϏ⧂āĻ¤ā§āϰ āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰ⧇ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇āĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇,

$\cos \theta+\sqrt{3} \sin \theta=\sqrt{2}$
$\Rightarrow \cos \theta-\sqrt{2}=-\sqrt{3} \sin \theta$

$\Rightarrow(\cos \theta)^{2}-2 \cdot \cos \theta \cdot \sqrt{2}+(\sqrt{2})^{2}=(-\sqrt{3} \sin \theta)^{2}$ [āωāϭ⧟āĻĒāĻ•ā§āώāϕ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰ⧇]

$\Rightarrow \cos ^{2} \theta-2 \sqrt{2} \cos \theta+2=3 \sin ^{2} \theta$
$\Rightarrow \cos ^{2} \theta-2 \sqrt{2} \cos \theta+2=3\left(1-\cos ^{2} \theta\right) \quad\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow \cos ^{2} \theta+3 \cos ^{2} \theta-2 \sqrt{2} \cos \theta+2-3=0$
$\Rightarrow 4 \cos ^{2} \theta-2 \sqrt{2} \cos \theta-1=0$
$\therefore \cos \theta$

$=\frac{2 \sqrt{2} \pm \sqrt{(2 \sqrt{2})^{2}-4.4(-1)}}{2.4}$

$=\frac{2 \sqrt{2} \pm \sqrt{8+16}}{8}$

$=\frac{2 \sqrt{2} \pm \sqrt{4 \times 6}}{8}$

$=\frac{2 \sqrt{2} \pm 2 \sqrt{2 \times 3}}{8}$

$=\frac{2 \sqrt{2} \pm 2 \sqrt{2} \sqrt{3}}{4 \sqrt{2} \sqrt{2}}$

$=\frac{2 \sqrt{2}(1 \pm \sqrt{3})}{4 \sqrt{2} \sqrt{2}}$

$=\frac{1 \pm \sqrt{3}}{2 \sqrt{2}}$

āĻšā§Ÿ,

$\cos \theta=\frac{1+\sqrt{3}}{2 \sqrt{2}}$

$\Rightarrow \cos \theta=\cos \frac{\pi}{12}$

$\Rightarrow \theta=2 n \pi \pm \frac{\pi}{12}$

 

āĻ…āĻĨāĻŦāĻž,

$\cos \theta=\frac{1-\sqrt{3}}{2 \sqrt{2}}$

$\Rightarrow \cos \theta=\cos \frac{7 \pi}{12}$

$\Rightarrow \theta=2 n \pi \pm \frac{7 \pi}{12}$

 

āĻ•āϤ āĻĄāĻŋāĻ—ā§āϰ⧀ āϕ⧋āϪ⧇āϰ cos āĻ…āύ⧁āĻĒāĻžāϤ⧇āϰ āĻŽāĻžāύ $\frac{1+\sqrt{3}}{2 \sqrt{2}}$ āĻŦāĻž $\frac{1-\sqrt{3}}{2 \sqrt{2}}$ āϤāĻž Calculator āĻāϰ āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• inverse āĻĢāĻžāĻ‚āĻļāύ āĻŦā§āϝāĻŦāĻšāĻžāϰ āĻ•āϰ⧇ āĻŦ⧇āϰ āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤

trigo-chap4-1

∴ $\theta=2 \mathrm{n} \pi \pm \frac{\pi}{12}$  āĻāĻŦāĻ‚Â $2 n \pi \pm \frac{7 \pi}{12}$

āĻ•āĻŋāĻ¨ā§āϤ⧁, $2 n \pi-\frac{\pi}{12}$ āĻāĻŦāĻ‚ $2 n \pi-\frac{7 \pi}{12}$ āĻāϰ āϜāĻ¨ā§āϝ θ āĻāϰ āĻĒā§āϰāĻžāĻ¨ā§āϤāĻŋāĻ• āĻŦāĻžāĻšā§āϰ āĻ…āĻŦāĻ¸ā§āĻĨāĻžāύ āĻšā§Ÿ āϚāϤ⧁āĻ°ā§āĻĨ āϚāϤ⧁āĻ°ā§āĻ­āĻžāϗ⧇ āϝ⧇āĻ–āĻžāύ⧇ sin āĻ…āύ⧁āĻĒāĻžāϤ āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ•āĨ¤ $2 \mathrm{n} \pi-\frac{\pi}{12}$ āĻāĻŦāĻ‚ $2 n \pi-\frac{7 \pi}{12}$  āĻŽā§‚āϞ āĻĻ⧁āχāϟāĻŋ āĻŽā§‚āϞāϤ $\cos \theta-\sqrt{3} \sin \theta=\sqrt{2}$ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻŽāĻžāϧāĻžāύ āϝāĻž āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϏāĻŽā§€āĻ•āϰāĻŖāϕ⧇ āĻŦāĻ°ā§āĻ— āĻ•āϰāĻžāϰ āĻĢāϞ⧇ āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āĻ…āĻ¨ā§āϤāĻ°ā§āϭ⧁āĻ•ā§āϤ āĻšā§Ÿā§‡āϛ⧇āĨ¤

∴ āύāĻŋāĻ°ā§āĻŖā§‡ā§Ÿ āϏāĻŽāĻžāϧāĻžāύ: $\theta=2 n \pi+\frac{\pi}{12}, 2 n \pi+\frac{7 \pi}{12}$

āĻĒāĻĻā§āϧāϤāĻŋ 2:

āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āωāϭ⧟āĻĒāĻ•ā§āώāϕ⧇ cos θ āĻ“ sin θ āĻāϰ āϏāĻšāϗ⧇āϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āύāϤ⧁āύ āϏāĻšāĻ— āĻŦāĻŋāĻļāĻŋāĻˇā§āϟ āϏāĻŽā§€āĻ•āϰāĻŖ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§ŸāĨ¤ cos θ āĻāϰ āϏāĻšāĻ—āϕ⧇ āφāύ⧁āώāĻ™ā§āĻ—āĻŋāĻ• cos āĻ…āύ⧁āĻĒāĻžāϤ⧇āϰ āĻāĻŦāĻ‚ sin θ āĻāϰ āϏāĻšāĻ—āϕ⧇ āφāύ⧁āώāĻ™ā§āĻ—āĻŋāĻ• sin āĻ…āύ⧁āĻĒāĻžāϤ āĻĻā§āĻŦāĻžāϰāĻž āĻĒā§āϰāϤāĻŋāĻ¸ā§āĻĨāĻžāĻĒāĻŋāϤ āĻ•āϰ⧇ āϝ⧌āĻ—āĻŋāĻ• āϕ⧋āϪ⧇āϰ āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• āĻ…āύ⧁āĻĒāĻžāϤ⧇āϰ āϏ⧂āĻ¤ā§āϰ āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰāϞ⧇ āĻŦāĻžāĻŽāĻĒāĻ•ā§āώ⧇ āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āϰ cos āĻ…āύ⧁āĻĒāĻžāϤ āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āĻĨāĻžāϕ⧇āĨ¤ āĻĄāĻžāύāĻĒāĻ•ā§āώ⧇ āφāύ⧁āώāĻ™ā§āĻ—āĻŋāĻ• cos āĻ…āύ⧁āĻĒāĻžāϤ āĻŦāϏāĻŋā§Ÿā§‡ cos āĻāϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āϏ⧂āĻ¤ā§āϰ āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰāϞ⧇ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§ŸāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇,

cos θ āĻāϰ āϏāĻšāĻ— = 1

sin θ āĻāϰ āϏāĻšāĻ— = $\sqrt{3}$

∴ āϏāĻšāĻ—āĻĻā§āĻŦā§Ÿā§‡āϰ āĻŦāĻ°ā§āϗ⧇āϰ āϝ⧋āĻ—āĻĢāϞ⧇āϰ āĻŦāĻ°ā§āĻ—āĻŽā§‚āϞ = $\sqrt{(1)^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=\sqrt{4}=2$

āϏ⧁āϤāϰāĻžāĻ‚ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϏāĻŽā§€āĻ•āϰāĻŖ:

$\cos \theta+\sqrt{3} \sin \theta=\sqrt{2}$

$\Rightarrow \frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta=\frac{\sqrt{2}}{2}$  [āωāϭ⧟āĻĒāĻ•ā§āώāϕ⧇ 2 āĻĻā§āĻŦāĻžāϰāĻž āĻ­āĻžāĻ— āĻ•āϰ⧇]

$\Rightarrow \cos \theta \cos \frac{\pi}{3}+\sin \theta \sin \frac{\pi}{3}=\frac{\sqrt{2}}{\sqrt{2} \times \sqrt{2}}$ [0°, 30°, 45°, 60° āĻ“ 90° āϕ⧋āϪ⧇āϰ āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• āĻ…āύ⧁āĻĒāĻžāϤāϗ⧁āϞ⧋āϰ āĻŽāĻžāύ]

$\Rightarrow \cos \left(\theta-\frac{\pi}{3}\right)=\frac{1}{\sqrt{2}}$  [cos (A ‒ B) = cos A cos B + sin A sin B]

$\Rightarrow \cos \left(\theta-\frac{\pi}{3}\right)=\cos \frac{\pi}{4}$

$\Rightarrow \theta-\frac{\pi}{3}=2 \mathrm{n} \pi \pm \frac{\pi}{4}$  [cos θ = cos Îą āĻšāϞ⧇ θ = 2nĪ€ Âą Îą]

āĻšā§Ÿ,

$\theta-\frac{\pi}{3}=2 \mathrm{n} \pi+\frac{\pi}{4} \Rightarrow \theta=2 \mathrm{n} \pi+\frac{\pi}{4}+\frac{\pi}{3}=2 \mathrm{n} \pi+\frac{7 \pi}{12}$

āĻ…āĻĨāĻŦāĻž,

$\theta-\frac{\pi}{3}=2 \mathrm{n} \pi-\frac{\pi}{4} \Rightarrow \theta=2 \mathrm{n} \pi-\frac{\pi}{4}+\frac{\pi}{3}=2 \mathrm{n} \pi+\frac{\pi}{12}$

āωāĻĻāĻžāĻšāϰāĻŖ 2. āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰ: cos x + sin x = cos 2x + sin 2x

āϏāĻŽāĻžāϧāĻžāύ:

āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• āĻ…āύ⧁āĻĒāĻžāϤ⧇āϰ āϝ⧋āĻ—āĻĢāϞāϰ⧂āĻĒ⧇ āϕ⧋āϪ⧇āϰ āϗ⧁āĻŖāĻŋāϤāĻ• āĻĨāĻžāĻ•āϞ⧇ āϏ⧂āĻ¤ā§āϰ āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰ⧇ āϤāĻžāĻĻ⧇āϰ āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• āĻ…āύ⧁āĻĒāĻžāϤ⧇āϰ āϗ⧁āĻŖāĻĢāϞāϰ⧂āĻĒ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰ⧇ āĻ…āϧāĻŋāĻ•āĻžāĻ‚āĻļ āϏāĻŽā§Ÿ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻž āϝāĻžā§ŸāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇,

$\cos x+\sin x=\cos 2 x+\sin 2 x$
$\Rightarrow \cos x-\cos 2 x=\sin 2 x-\sin x$

$\Rightarrow 2 \sin \frac{x+2 x}{2} \sin \frac{2 x-x}{2}=2 \cos \frac{2 x+x}{2} \sin \frac{2 x-x}{2}$ [āĻ¤ā§āϰāĻŋāϕ⧋āĻŖāĻŽāĻŋāϤāĻŋāĻ• āĻ…āύ⧁āĻĒāĻžāϤ⧇āϰ āϝ⧋āĻ— āĻŦāĻž āĻŦāĻŋā§Ÿā§‹āĻ—āĻĢāϞ āϗ⧁āĻŖāĻĢāϞ⧇ āϰ⧂āĻĒāĻžāĻ¨ā§āϤāϰ]

$\Rightarrow \sin \frac{3 x}{2} \sin \frac{x}{2}=\cos \frac{3 x}{2} \sin \frac{x}{2}$

$\Rightarrow \sin \frac{3 x}{2} \sin \frac{x}{2}-\cos \frac{3 x}{2} \sin \frac{x}{2}=0$

$\Rightarrow \sin \frac{x}{2}\left(\sin \frac{3 x}{2}-\cos \frac{3 x}{2}\right)=0$

āĻšā§Ÿ,

$\sin \frac{x}{2}=0$

$\Rightarrow \frac{\mathrm{x}}{2}=\mathrm{n} \pi$ [sin θ = 0 āĻšāϞ⧇ θ = nĪ€]

∴ x = 2nĪ€

āĻ…āĻĨāĻŦāĻž,

$\sin \frac{3 x}{2}-\cos \frac{3 x}{2}=0$

$\Rightarrow \sin \frac{3 x}{2}=\cos \frac{3 x}{2}$

$\Rightarrow \frac{\sin \frac{3 x}{2}}{\cos \frac{3 x}{2}}=1$

$\Rightarrow \tan \frac{3 x}{2}=1$

 

$\Rightarrow \frac{3 \mathrm{x}}{2}=\mathrm{n} \pi+\frac{\pi}{4}$  [tan θ = 1 āĻšāĻ˛ā§‡Â $\theta=\mathrm{n} \pi+\frac{\pi}{4}$ ]

∴ $\mathrm{x}=\frac{2}{3}\left(\mathrm{n} \pi+\frac{\pi}{4}\right)$

āωāĻĻāĻžāĻšāϰāĻŖ 3. āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰ: cot θ + tan θ = 2 sec θ

āϏāĻŽāĻžāϧāĻžāύ:

āϏāĻŽā§€āĻ•āϰāϪ⧇ tan, cot, sec, cosec āĻāĻ•āϏāĻžāĻĨ⧇ āĻĨāĻžāĻ•āϞ⧇ āϤāĻžāĻĻ⧇āϰ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ $\frac{\sin }{\cos }, \frac{\cos }{\sin }, \frac{1}{\cos }, \frac{1}{\sin }$ āĻ āϰ⧂āĻĒāĻžāĻ¨ā§āϤāϰāĻŋāϤ āĻ•āϰāϞ⧇ āĻ…āύ⧇āĻ• āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āχ āϏāĻŽāĻžāϧāĻžāύ āϏāĻšāϜāϤāϰ āĻšā§ŸāĨ¤ āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇,

$\cot \theta+\tan \theta=2 \sec \theta$

$\Rightarrow \frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}=2 \frac{1}{\cos \theta}$

$\Rightarrow \frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cos \theta}=2 \frac{1}{\cos \theta}$

$\Rightarrow \frac{1}{\sin \theta}=2$

$\Rightarrow \sin \theta=\frac{1}{2}$

$\Rightarrow \sin \theta=\sin \frac{\pi}{6}$

 

∴ $\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{6}$ [sin θ = sin Îą āĻšāϞ⧇ θ = $\theta=n \pi+(-1)^{\mathrm{n}} \alpha$ ]

 

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ

1. $4\left(\sin ^{2} \theta+\cos \theta\right)=5$ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ ‒

[DU 2003-2004, 2009-2010]

(A) $2 \mathrm{n} \pi \pm \frac{\pi}{2}$
(B) $2 \mathrm{n} \pi \pm \frac{\pi}{3}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{4}$
(D) $2 \mathrm{n} \pi \pm \frac{\pi}{5}$

 

2. $4\left(\sin ^{2} \theta+\cos \theta\right)=5$ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ ‒

[DU 2004-2005, 2011-2012]

(A) $\theta=2 \mathrm{n} \pi-\frac{\pi}{3}$
(B) $\theta=2 \mathrm{n} \pi+\frac{\pi}{6}$
(C) $\theta=2 \mathrm{n} \pi+\frac{\pi}{3}$
(D) $\theta=2 \mathrm{n} \pi-\frac{\pi}{4}$

3. cot x ‒ tan x = 2 āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ ‒

[DU 2005-2006]

(A) $\frac{\mathrm{n} \pi}{4}$
(B) $\frac{\mathrm{n} \pi}{2}$
(C) $\frac{(4 n+1) \pi}{8}$
(D) $\frac{(4 \mathrm{n}+1) \pi}{2}$

4. $2(\cos x+\sec x)=5$ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ ‒

[DU 2006-2007]

(A) $n \pi \pm \frac{\pi}{3}$
(B) $2 \mathrm{n} \pi \pm \frac{\pi}{3}$
(C) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$
(D) $n \pi \pm \frac{\pi}{6}$

 

5. $2 \cos ^{2} \theta+2 \sqrt{2} \sin \theta=3$ āĻšāϞ⧇ θ āĻāϰ āĻŽāĻžāύ ‒

[DU 2007-2008]

(A) $30^{\circ}$
(B) $45^{\circ}$
(C) $60^{\circ}$
(D) $135^{\circ}$

6. $2 \cos \theta=1$ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ ‒

[DU 2008-2009]

(A) $\theta=\mathrm{n} \pi+\frac{\pi}{3}$
(B) $\theta=2 \mathrm{n} \pi \pm \frac{\pi}{6}$
(C) $\theta=2 \mathrm{n} \pi+\frac{\pi}{6}$
(D) $\theta=2 \mathrm{n} \pi \pm \frac{\pi}{3}$

7. $\sin ^{2} 2 \theta-3 \cos ^{2} \theta=0$ āϏāĻŽā§€āĻ•āϰāϪ⧇āϰ āϏāĻžāϧāĻžāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ ‒

[DU 2010-2011]

(A) $2 \mathrm{n} \pi \pm \frac{\pi}{3}$
(B) $n \pi \pm \frac{\pi}{3}$
(C) $n \pi \pm \frac{\pi}{6}$
(D) $2 \mathrm{n} \pi \pm \frac{\pi}{6}$

āϏāĻŽāĻžāϧāĻžāύ

1.

$4\left(\sin ^{2} \theta+\cos \theta\right)=5$
$\Rightarrow 4 \sin ^{2} \theta+4 \cos \theta=5$
$\Rightarrow 4\left(1-\cos ^{2} \theta\right)+4 \cos \theta=5$
$\Rightarrow 4-4 \cos ^{2} \theta+4 \cos \theta=5$
$\Rightarrow 4 \cos ^{2} \theta-4 \cos \theta+1=0$
$\Rightarrow(2 \cos \theta-1)^{2}=0$
$\Rightarrow 2 \cos \theta-1=0$
$\Rightarrow \cos \theta=\frac{1}{2}=\cos \frac{\pi}{3}$

∴ $\theta=2 n \pi \pm \frac{\pi}{3}$  [cos θ = cos Îą āĻšāϞ⧇ θ = 2nĪ€ Âą Îą]

∴ Answer: (B)

2.

[āωāĻĻāĻžāĻšāϰāĻŖ 1 āĻĻā§āϰāĻˇā§āϟāĻŦā§āϝ]

$\cos \theta+\sqrt{3} \sin \theta=2$
$\Rightarrow \frac{1}{2} \cos \theta+\frac{\sqrt{3}}{2} \sin \theta=1$
$\Rightarrow \cos \frac{\pi}{3} \cos \theta+\sin \frac{\pi}{3} \sin \theta=1$
$\Rightarrow \cos \left(\theta-\frac{\pi}{3}\right)=1$

$\Rightarrow \theta-\frac{\pi}{3}=2 n \pi$ [cos θ = 1 āĻšāϞ⧇ θ = 2nĪ€]

$\therefore \theta=2 \mathrm{n} \pi+\frac{\pi}{3}$

∴ Answer: (C)

3.

$\cot x-\tan x=2$
$\Rightarrow \frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}=2$
$\Rightarrow \frac{\cos ^{2} x-\sin ^{2} x}{\sin x \cos x}=2$
$\Rightarrow \frac{\cos 2 x}{2 \sin x \cos x}=1$
$\Rightarrow \frac{\cos 2 x}{\sin 2 x}=1$
$\Rightarrow \tan 2 x=1$

$\Rightarrow 2 \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}$ [tan θ = 1 āĻšāϞ⧇ $\theta=\mathrm{n} \pi+\frac{\pi}{4}$ ]

$\Rightarrow 2 \mathrm{x}=\frac{4 \mathrm{n} \pi+\pi}{4}$
$\therefore \mathrm{x}=\frac{(4 \mathrm{n}+1) \pi}{8}$

∴ Answer: (C)

4.

$2(\cos x+\sec x)=5$
$\Rightarrow 2 \cos x+\frac{2}{\cos x}=5$

$\Rightarrow \frac{2 \cos ^{2} x+2}{\cos x}=5$
$\Rightarrow 2 \cos ^{2} x+2=5 \cos x$
$\Rightarrow 2 \cos ^{2} x-5 \cos x+2=0$
$\Rightarrow 2 \cos ^{2} x-4 \cos x-\cos x+2=0$
$\Rightarrow 2 \cos x(\cos x-2)-1(\cos x-2)=0$
$\Rightarrow(\cos x-2)(2 \cos x-1)=0$

āĻšā§Ÿ,

cos x ‒ 2 = 0

⇒ cos x = 2 āϝāĻž āĻ…āϏāĻŽā§āĻ­āĻŦ āϕ⧇āύāύāĻž, ‒ 1 ≤ cos x ≤ 1

āĻ…āĻĨāĻŦāĻž,

$2 \cos x-1=0$
$\Rightarrow \cos x=\frac{1}{2}=\cos \frac{\pi}{3}$

∴ $x=2 n \pi \pm \frac{\pi}{3}$  [cos θ = cos Îą āĻšāϞ⧇ θ = 2nĪ€ Âą Îą]

∴ Answer: (C)

5.

$2 \cos ^{2} \theta+2 \sqrt{2} \sin \theta=3$
$\Rightarrow 2\left(1-\sin ^{2} \theta\right)+2 \sqrt{2} \sin \theta=3$
$\Rightarrow 2-2 \sin ^{2} \theta+2 \sqrt{2} \sin \theta=3$
$\Rightarrow 2 \sin ^{2} \theta-2 \sqrt{2} \sin \theta+1=0$
$\Rightarrow(\sqrt{2} \sin \theta-1)^{2}=0$
$\Rightarrow \sqrt{2} \sin \theta-1=0$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}=\sin \frac{\pi}{4}$
$\therefore \theta=\frac{\pi}{4}=45^{\circ}$

∴ Answer: (B)

6.

$2 \cos \theta=1$
$\Rightarrow \cos \theta=\frac{1}{2}=\cos \frac{\pi}{3}$

$\therefore \theta=2 \mathrm{n} \pi \pm \frac{\pi}{3}$  [cos θ = cos Îą āĻšāϞ⧇ θ = 2nĪ€ Âą Îą]

∴ Answer: (D)

7.

$\sin ^{2} 2 \theta-3 \cos ^{2} \theta=0$
$\Rightarrow(\sin 2 \theta)^{2}-3 \cos ^{2} \theta=0$
$\Rightarrow(2 \sin \theta \cos \theta)^{2}-3 \cos ^{2} \theta=0$
$\Rightarrow 4 \sin ^{2} \theta \cos ^{2} \theta-3 \cos ^{2} \theta=0$
$\Rightarrow \cos ^{2} \theta\left(4 \sin ^{2} \theta-3\right)=0$

āĻšā§Ÿ,

$\cos ^{2} \theta=0$
$\Rightarrow \cos \theta=0$

$\therefore \theta=(2 n+1) \frac{\pi}{2}$  [cos θ = 0 āĻšāϞ⧇ θ = (2n + 1) ]

āĻ…āĻĨāĻŦāĻž,

$4 \sin ^{2} \theta-3=0$
$\Rightarrow \sin ^{2} \theta=\frac{3}{4}$
$\Rightarrow \sin \theta=\frac{\sqrt{3}}{2}=\sin \frac{\pi}{3}$

$\Rightarrow \theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \frac{\pi}{3}$ [sin θ = sin Îą āĻšāϞ⧇ $\theta=n \pi+(-1)^{n} \alpha$ ]

∴ Answer: (B)