āϏāĻžāϧāĻžāϰāĻŖ āϧāĻžāϰāĻŖāĻžÂ
-
āϝā§āĻāĻžāĻļā§āϰā§ā§ āĻĒā§āϰā§āĻā§āϰāĻžāĻŽ
āĻĒā§āϰāĻžāĻĒā§āϤ āϏāĻŽā§āĻĒāĻĻā§āϰ āĻāĻŋāϤā§āϤāĻŋāϤ⧠āĻĒāϰāϏā§āĻĒāϰ āύāĻŋāϰā§āĻāϰāĻļā§āϞ āĻāĻžāĻ āĻŦāĻž āĻļāϰā§āϤ āĻĨā§āĻā§ āϏāĻŦāĻā§ā§ā§ āĻ āύā§āĻā§āϞ āĻĢāϞ āĻ āϰā§āĻāύā§āϰ āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āĻĒāĻĻā§āϧāϤāĻŋ āĻŦāĻž āĻā§āĻļāϞāĻā§ āϝā§āĻāĻžāĻļā§āϰā§ā§ āĻĒā§āϰā§āĻā§āϰāĻžāĻŽ āĻŦāϞāĻž āĻšā§āĨ¤
-
$x âĨ a$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻ āĻā§āĻāύÂ
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, $x = a , y$ āĻ āĻā§āώā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖāĨ¤ $x âĨ a$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $x = a$ āϰā§āĻāĻžāϰ āĻāĻĒāϰāϏā§āĻĨāĻŋāϤ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ āϤāĻžāϰ āĻā§ā§ā§ āĻŦā§ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻ āĻ āϰā§āĻĨāĻžā§ $x = a$ āϰā§āĻāĻž āĻ āϤāĻžāϰ āĻĄāĻžāύāĻĒāĻžāĻļā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻāĨ¤
āϤāĻžāĻšāϞā§, $x > a$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $x = a$ āϰā§āĻāĻžāϰ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻĄāĻžāύāĻĒāĻžāĻļā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻāĨ¤
- $x ⤠a$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻ āĻā§āĻāύÂ
āĻ āύā§āϰā§āĻĒāĻāĻžāĻŦā§ , $x ⤠a$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $x = a$ āϰā§āĻāĻžāϰ āĻāĻĒāϰāϏā§āĻĨāĻŋāϤ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ āϤāĻžāϰ āĻā§ā§ā§ āĻā§āĻ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻ āĻ āϰā§āĻĨāĻžā§ $x = a$ āϰā§āĻāĻž āĻ āϤāĻžāϰ āĻŦāĻžāĻŽāĻĒāĻžāĻļā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻāĨ¤
Â
āϤāĻžāĻšāϞā§, $x < a$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $x = a$ āϰā§āĻāĻžāϰ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻŦāĻžāĻŽāĻĒāĻžāĻļā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻāĨ¤
- $y âĨ b$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻ āĻā§āĻāύ
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, $y = b , x$ āĻ āĻā§āώā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖāĨ¤ $y âĨ b$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $y = b$ āϰā§āĻāĻžāϰ āĻāĻĒāϰāϏā§āĻĨāĻŋāϤ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ āϤāĻžāϰ āĻā§ā§ā§ āĻŦā§ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻ āĻ āϰā§āĻĨāĻžā§ $y = b$ āϰā§āĻāĻž āĻ āϤāĻžāϰ āĻāĻĒāϰā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻāĨ¤
Â
āϤāĻžāĻšāϞā§, $y > b$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $y = b$ āϰā§āĻāĻžāϰ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āĻāĻĒāϰā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻāĨ¤
- $y ⤠b$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻ āĻā§āĻāύÂ
āĻ āύā§āϰā§āĻĒāĻāĻžāĻŦā§ , $y ⤠b$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $y = b$ āϰā§āĻāĻžāϰ āĻāĻĒāϰāϏā§āĻĨāĻŋāϤ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ āϤāĻžāϰ āĻā§ā§ā§ āĻā§āĻ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻ āĻ āϰā§āĻĨāĻžā§ $y = b$ āϰā§āĻāĻž āĻ āϤāĻžāϰ āύāĻŋāĻā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻāĨ¤
āϤāĻžāĻšāϞā§, $y < b$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $y = b$ āϰā§āĻāĻžāϰ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āύāĻŋāĻā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϞā§āĻāĨ¤
- āϝā§āĻāĻžāĻļā§āϰā§ā§ āĻĒā§āϰā§āĻā§āϰāĻžāĻŽā§āϰ āĻā§āύ⧠āĻāϞāĻāĻ āĻāĻŖāĻžāϤā§āĻŽāĻ āĻšāĻŦā§ āύāĻžāĨ¤ āĻ āϰā§āĻĨāĻžā§ $x âĨ o$ āĻāĻŦāĻ $y âĨ o$ āĻšāĻŦā§āĨ¤
Â
- $ax+by âĨ c$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻ āĻā§āĻāύÂ
āĻāĻŽāϰāĻž āĻāĻžāύāĻŋ, $ax+by = c$ āĻāĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āϝāĻž āĻ
āĻā§āώāĻĻā§āĻŦā§āĻā§ āĻā§āĻĻ āĻāϰā§āĨ¤ āĻ
āϰā§āĻĨāĻžā§,
$\mathrm{ax}+\mathrm{by}=\mathrm{c} \Rightarrow \frac{x}{c / a}+\frac{y}{c / a}=1$ āϏāϰāϞāϰā§āĻāĻž $x$ āĻ
āĻā§āώāĻā§Â $\left(\frac{\mathrm{c}}{\mathrm{a}}, 0\right)$ āĻāĻŦāĻ $y$ āĻ
āĻā§āώāĻā§Â $\left(0, \frac{c}{a}\right)$ āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤
āĻ āĻĨāĻŦāĻž, āϏāϰāϞāϰā§āĻāĻžāĻāĻŋ āϝ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠x āĻ āĻā§āώāĻā§ āĻā§āĻĻ āĻāϰ⧠āϏ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻāĻŋ āĻļā§āύā§āϝāĨ¤
āϏāĻŽā§āĻāϰāĻŖā§ $y = 0$ āĻŦāϏāĻžāϞ⧠$x$ āĻ
āĻā§āώ⧠āĻāϰā§āϤāĻŋāϤ āĻ
āĻāĻļ (x-intercept) āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§āĨ¤
$a x+b(0)=c \Rightarrow x=\frac{c}{a}$
āĻāĻŦāĻ āϏāϰāϞāϰā§āĻāĻžāĻāĻŋ āϝ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠$y$ āĻ āĻā§āώāĻā§ āĻā§āĻĻ āĻāϰ⧠āϏ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻ āĻļā§āύā§āϝāĨ¤ āϏāĻŽā§āĻāϰāĻŖā§ $x=0$ āĻŦāϏāĻžāϞ⧠$y$ āĻ āĻā§āώ⧠āĻāϰā§āϤāĻŋāϤ āĻ āĻāĻļ (y-intercept) āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§āĨ¤
$a(0)+b y=c \Rightarrow y=\frac{c}{b}$
āĻĒā§āϰāĻžāĻĒā§āĻ¤Â $\left(\frac{c}{a}, 0\right)$ āĻāĻŦāĻ $\left(0, \frac{c}{\mathrm{~b}}\right)$ āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦā§āĻā§ āϝā§āĻ āĻāϰāϞ⧠$ax+by = c$ āϰā§āĻāĻžāϰ āϞā§āĻ āĻĒāĻžāĻā§āĻž āϝāĻžāĻŦā§āĨ¤ $ax+by âĨ c$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $ax+by = c$ āϰā§āĻāĻžāϰ āĻāĻĒāϰāϏā§āĻĨāĻŋāϤ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ āϤāĻžāϰ āĻā§ā§ā§ āĻŦā§ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϏā§āĻ āĻ āϰā§āĻĨāĻžā§ $ax+by = c$ āϰā§āĻāĻž āĻ āϤāĻžāϰ āϝ⧠āĻĻāĻŋāĻā§ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻāĻā§ āϤāĻžāϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻĻāĻŋāĻā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϏā§āĻāĨ¤ Â
āϤāĻžāĻšāϞā§, $ax+by > c$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $ax+by = c$ āϰā§āĻāĻžāϰ āϝ⧠āĻĻāĻŋāĻā§ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻāĻā§ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āϤāĻžāϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻĻāĻŋāĻā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϏā§āĻāĨ¤
- $ax+by ⤠c$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻ āĻā§āĻāύÂ
āĻ āύā§āϰā§āĻĒāĻāĻžāĻŦā§ , $ax+by ⤠c$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $ax+by = c$ āϰā§āĻāĻžāϰ āĻāĻĒāϰāϏā§āĻĨāĻŋāϤ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§ āĻāĻŦāĻ āϤāĻžāϰ āĻā§ā§ā§ āĻā§āĻ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϏā§āĻ āĻ āϰā§āĻĨāĻžā§ $ax+by = c$ āϰā§āĻāĻž āĻ āϤāĻžāϰ āϝ⧠āĻĻāĻŋāĻā§ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻāĻā§ āϏ⧠āĻĻāĻŋāĻā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϏā§āĻāĨ¤
Â
āϤāĻžāĻšāϞā§, $ax+by < c$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ āĻšāĻŦā§ $ax+by = c$ āϰā§āĻāĻžāϰ āϝ⧠āĻĻāĻŋāĻā§ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻāĻā§ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ āϏ⧠āĻĻāĻŋāĻā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āϰ āϏā§āĻāĨ¤
āĻāĻŋāĻā§ āϏāĻŽāϏā§āϝāĻž āĻ āϏāĻŽāĻžāϧāĻžāύ:
1. $x+2 y \leq 10, x+y \leq 6, x \leq 4, x \geq 0, y \geq 0$ āĻļāϰā§āϤāϏāĻŽā§āĻš āϏāĻžāĻĒā§āĻā§āώ⧠$z=2x+3y$ āϰāĻžāĻļāĻŋāĻāĻŋāϰ āϏāϰā§āĻŦā§āĻā§āĻāĻāϰāĻŖ āĻāϰāĨ¤
$x+2 y \leq 10 \Rightarrow x / 10+y / 5 \leq 1$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ :
$x+yâ¤6$ āĻ
āϏāĻŽāϤāĻžāϰ āϞā§āĻ :
Â
$xâ¤4$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻ :
â´ āϏāĻŽā§āĻĒā§āϰā§āĻŖ āĻĒā§āϰā§āĻā§āϰāĻžāĻŽā§āϰ āϞā§āĻ :
āĻāĻāĻžāύā§, $A, B, C$ āĻ $D$ āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§āϏāĻŽā§āĻš āĻ āϰā§āĻĨāĻžā§ āϏāĻŽā§āĻāĻžāĻŦā§āϝ āϏ⧠āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§ āϝāĻžāĻĻā§āϰ āĻāύā§āϝ āĻĒā§āϰāĻĻāϤā§āϤ āϰāĻžāĻļāĻŋāϰ āϏāϰā§āĻŦā§āĻā§āĻ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝā§āϤ⧠āĻĒāĻžāϰā§āĨ¤
āĻāĻāĻžāύā§,
$A ⥠(0,5)$
$B ⥠(2,4)$           [ $x+2y=10$ āĻ $x+y=6$ āϰā§āĻāĻžāϰ āĻā§āĻĻāĻŦāĻŋāύā§āĻĻā§āĨ¤ āϏāĻŽā§āĻāϰāĻŖāĻĻā§āĻŦā§ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāϞ⧠āϝāĻžāϰ
āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžā§ āĨ¤ Use calculator to solve equations to save time. ]
$C ⥠(4,2)$           [ $x+y=6$ āĻ $x=4$ āϰā§āĻāĻžāϰ āĻā§āĻĻāĻŦāĻŋāύā§āĻĻā§ ]
$D ⥠(4,0)$
$A (0,5)$ āĻŦāĻŋāύā§āĻĻā§āϤ⧠$z = 2(0)+3(5) = 15$
$B (2,4)$ āĻŦāĻŋāύā§āĻĻā§āϤ⧠$z = 2(2)+3(4) = 16$
$C (4,2)$ āĻŦāĻŋāύā§āĻĻā§āϤ⧠$z = 2(4)+3(2) = 14$
$D (4,0)$ āĻŦāĻŋāύā§āĻĻā§āϤ⧠$z = 2(4)+3(0) = 8$
â´ $Z$ āĻāϰ āϏāϰā§āĻŦā§āĻā§āĻ āĻŽāĻžāύ $16$ āĨ¤
[Answer]
2. $x+y \leq 5, x+2 y \leq 8,4 x+3 y>12, x \geq 0, x \geq 0$ āĻļāϰā§āϤāϏāĻŽā§āĻš āϏāĻžāĻĒā§āĻā§āώ⧠āϰāĻžāĻļāĻŋāĻāĻŋāϰ āϏāϰā§āĻŦāύāĻŋāĻŽā§āύāĻāϰāĻŖ āĻāϰāĨ¤
â´ āϏāĻŽā§āĻĒā§āϰā§āĻŖ āĻĒā§āϰā§āĻā§āϰāĻžāĻŽā§āϰ āϞā§āĻ :
āĻāĻāĻžāύā§, $A,B,C$ āĻ $D$ āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§āϏāĻŽā§āĻš āĻ āϰā§āĻĨāĻžā§ āϏāĻŽā§āĻāĻžāĻŦā§āϝ āϏ⧠āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§ āϝāĻžāĻĻā§āϰ āĻāύā§āϝ āĻĒā§āϰāĻĻāϤā§āϤ āϰāĻžāĻļāĻŋāϰ āϏāϰā§āĻŦāύāĻŋāĻŽā§āύ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝā§āϤ⧠āĻĒāĻžāϰā§āĨ¤
āĻāĻŋāύā§āϤ⧠$A$ āĻāĻŦāĻ $D$  $4x+3y > 12$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻā§āϰ āĻŦāĻŋāύā§āĻĻā§ āύā§āĨ¤ āĻā§āύāύāĻž, $4x+3y = 0$ āϰā§āĻāĻžāϰ āϝ⧠āĻĒāĻžāĻļā§ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻāĻā§ āϤāĻžāϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻĒāĻžāĻļā§āϰ āϏāĻāϞ āĻŦāĻŋāύā§āĻĻā§āĻ āĻļā§āϧā§āĻŽāĻžāϤā§āϰ $4x+3y > 12$ āĻ āϏāĻŽāϤāĻžāϰ āϞā§āĻā§āϰ āĻŦāĻŋāύā§āĻĻā§āĨ¤ â´ $A$ āĻāĻŦāĻ $D$ āĻŦāĻŋāύā§āĻĻā§ āĻļāϰā§āϤ āĻŦāĻšāĻŋāϰā§āĻā§āϤāĨ¤
āĻāĻāĻžāύā§,
$B ⥠(2,3)$       [ $x+y = 5$ āĻ $x+2y = 8$ āϰā§āĻāĻžāϰ āĻā§āĻĻāĻŦāĻŋāύā§āĻĻā§āĨ¤ āϏāĻŽā§āĻāϰāĻŖāĻĻā§āĻŦā§ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāϞ⧠āϝāĻžāϰ āĻŽāĻžāύ
āĻĒāĻžāĻā§āĻž āϝāĻžā§ āĨ¤ Use calculator to solve equations to save time. ]
$C ⥠(5.0)$
â´ $B (2,3)$ āĻŦāĻŋāύā§āĻĻā§āϤ⧠, $z = 2(2) - 3 =1$
â´ $C (5,0)$ āĻŦāĻŋāύā§āĻĻā§āϤ⧠, $z = 2(5) â 0 =10$
â´ $Z$ āĻāϰ āϏāϰā§āĻŦāύāĻŋāĻŽā§āύ āĻŽāĻžāύ $1$ .
[Answer ]Â
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ āĻ āϏāĻŽāĻžāϧāĻžāύÂ
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύÂ
# 1. $x \geq 0, y \geq 0, x+y \geq 6,2 x+y \geq 8$ āĻļāϰā§āϤāϏāĻŽā§āĻš āϏāĻžāĻĒā§āĻā§āώ⧠$z = 2x+3y$ āϰāĻžāĻļāĻŋāĻāĻŋāϰ āϏāϰā§āĻŦāύāĻŋāĻŽā§āύ āĻŽāĻžāύ- [ DU : 06-07 ]
a.16
b.10
c.12
d.14
# 2. $5 \mathrm{x}_{1}+10 \mathrm{x}_{2} \leq 50, \mathrm{x}_{1}+\mathrm{x}_{2} \geq 1, \mathrm{x}_{2} \leq 4, \mathrm{x}_{1} \geq 0, \mathrm{x}_{2} \geq 0$ āĻļāϰā§āϤāϏāĻŽā§āĻš āϏāĻžāĻĒā§āĻā§āώ⧠āϰāĻžāĻļāĻŋāĻāĻŋāĻ°Â $2 \mathrm{x}_{1}+7 \mathrm{x}_{2}$ āϞāĻāĻŋāώā§āĻ āĻŽāĻžāύ- [ DU : 08-09 ]
a.2
b.7
c.20
d.28
# 3. āύāĻŋāĻŽā§āύā§āϰ āϞāĻŋāύāĻŋā§āĻžāϰ āĻĒā§āϰā§āĻā§āϰāĻžāĻŽāĻŋāĻ āϏāĻŽāϏā§āϝāĻžāϰ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāĨ¤
āĻāϰāĻŋāώā§āĻ āĻāϰāĻŖ āĻāϰ, $z = 3x+4y$
āĻļāϰā§āϤ āĻšāĻā§āĻā§, $x+y \leq 7,2 x+5 y \leq 20, x \geq 0, y \geq 0$
a.(5,2)
b.(7,0)
c.(10,0)
d.(0,7)
Â
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύā§āϰ āϏāĻŽāĻžāϧāĻžāύÂ
1. $x / 6+y / 6 \geq 1, \quad x / 4+y / 8 \geq 1 \quad 1 x+y=6$
  $2 x+y=8$
  $\approx(6,0),(0,6) \quad \approx(4,0),(0,8) \quad \approx(2,4)$
[see example 2 for details]
Â
āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§ āĻšāĻŋāϏā§āĻŦā§ $(0,6)$ āĻā§ āĻŦāĻžāĻĻ āĻĻā§ā§āĻž āϝā§āϤ⧠āĻĒāĻžāϰ⧠âĩ āĻĻā§āĻŦāĻŋāϤā§ā§ āĻļāϰā§āϤāĻŽāϤā§, $yâĨ8$
āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§ āĻšāĻŋāϏā§āĻŦā§ $(4,0)$ āĻā§ āĻŦāĻžāĻĻ āĻĻā§ā§āĻž āϝā§āϤ⧠āĻĒāĻžāϰ⧠âĩ āĻĒā§āϰāĻĨāĻŽ āĻļāϰā§āϤāĻŽāϤā§, $xâĨ6$
â´Â $\operatorname{At}(6,0), \mathrm{z}=2(6)+3(0)=12$
  $\mathrm{At}(8,0), \mathrm{Z}=2(0)+3(8)=24$
  $\mathrm{At}(2,4), \mathrm{Z}=2(2)+3(4)=16$
â´ $z$ āĻāϰ āϏāϰā§āĻŦāύāĻŋāĻŽā§āύ āĻŽāĻžāĻ¨Â $12$.
[ Answer : C ]
Â
2. $5 \mathbf{x}_{1}+10 \times x_{2} \leq 50, \quad x_{1}+x_{2} \geq 1, \quad x_{2} \leq 4, \quad 5 x_{1}+10 x_{2}=50$
  $\Rightarrow \mathbf{x}_{1} / \mathbf{1 0}+\mathbf{x}_{2} / 5 \leq 1 \quad \approx(1,0),(0,1) \quad 5 x_{1}+10 x_{2}=50 \quad x_{1}+x_{2}=1$
   $\approx(10,0),(0,5) \quad \approx(2,4) \quad \approx(-8,9)$
   $\approx(0,4)$
āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§ āĻšāĻŋāϏā§āĻŦā§ $(0,5)$ āĻ $(-8,9)$ āĻā§ āĻŦāĻžāĻĻ āĻĻā§ā§āĻž āϝā§āϤ⧠āĻĒāĻžāϰ⧠âĩ āĻĻā§āĻŦāĻŋāϤā§ā§ āĻļāϰā§āϤāĻŽāϤ⧠$x1âĨ1$
â´Â At $(10,0), z=2(10)+7(0)=20$
  At $(1,0), z=2(1)+7(0)=2$
  At $(0,1), z=2(0)+7(1)=7$
  At $(0,4), \quad z=2(0)+7(4)=28$
  At $(2,4), \quad z=2(2)+7(4)=32$
â´ $z$ āĻāϰ āϞāĻāĻŋāώā§āĻ āĻŽāĻžāĻ¨Â $2$.
[Answer : A]
Â
3. $\begin{array}{lll}x+y \leq 7 & 2 x+5 y \leq 20 & x+y=7\end{array}$
   $\Rightarrow \frac{x}{7}+\frac{y}{7} \leq 1 \quad \Rightarrow \frac{x}{10}+\frac{y}{4} \leq 1 \quad 2 x+5 y=20$
   $\approx(7,0),(0,7) \quad \approx(10,0),(0,4) \quad \approx(5,2)$
[see example 1 for details]
āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§ āĻšāĻŋāϏā§āĻŦā§ $(10,9)$ āĻā§ āĻŦāĻžāĻĻ āĻĻā§ā§āĻž āϝā§āϤ⧠āĻĒāĻžāϰ⧠âĩ āĻĒā§āϰāĻĨāĻŽ āĻļāϰā§āϤāĻŽāϤā§, $xâ¤7$
āĻĒā§āϰāĻžāύā§āϤāĻŋāĻ āĻŦāĻŋāύā§āĻĻā§ āĻšāĻŋāϏā§āĻŦā§ $(0,7)$ āĻā§ āĻŦāĻžāĻĻ āĻĻā§ā§āĻž āϝā§āϤ⧠āĻĒāĻžāϰ⧠âĩ āĻĻā§āĻŦāĻŋāϤā§ā§ āĻļāϰā§āϤāĻŽāϤā§, $yâ¤4$
â´ At $(7,0), \mathrm{z}=3(7)+4(0)=21$
  At $(0,4), z = 3(0)+4(4) =16$
  At $(5,2), z = 3(5)+4(2) = 23$
 ⴠ$(5,2)$ āĻ $z$ āĻāϰ āϏāϰā§āĻŦā§āĻā§āĻ āĻŽāĻžāύ āĻĒāĻžāĻā§āĻž āϝāĻžā§ āĨ¤ Â
[Answer : A]
Â
Â
Â
Â