āĻŦāĻŋāώāϝāĻŧāĻžāĻŦāϞā§
Â
āϏāĻžāϧāĻžāϰāĻŖ āϧāĻžāϰāĻŖāĻž

1. A (x1,y1) āĻ B (x2,y2) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞ(gradient) ,
m = āĻā§āĻāĻŋāĻĻā§āĻŦā§ā§āϰ āĻ āύā§āϤāϰ / āĻā§āĻāĻĻā§āĻŦā§ā§āϰ āĻ āύā§āϤāϰ = $\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$  Â
Â
2. ax+by+c=0 āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞ, m = -(a/b)
3. A (x1, y1), B (x2, y2) āĻāĻŦāĻ C (x3, y3) āĻŦāĻŋāύā§āĻĻā§ āϤāĻŋāύāĻāĻŋ āϏāĻŽāϰā§āĻ āĻšāĻŦā§ āϝāĻĻāĻŋ AB āĻāĻŦāĻ AC āϰā§āĻāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āĻĸāĻžāϞ āĻāĻāĻ āĻšāϝāĻŧ āĨ¤
Â
āĻ āϰā§āĻĨāĻžā§ āϝāĻĻāĻŋ, $\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{y_{1}-y_{3}}{x_{1}-x_{3}}$ āĻšāϝāĻŧ

4. x āĻ āĻā§āώā§āϰ āϏāĻŽā§āĻāϰāĻŖ, y = 0
5. y āĻ āĻā§āώā§āϰ āϏāĻŽā§āĻāϰāĻŖ, x = 0
6. x āĻ āĻā§āώā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, y = b                                               Â
7. y āĻ āĻā§āώā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, x = a

8. y āĻ āĻā§āώ āĻĨā§āĻā§ āύāĻŋāĻĻāĻŋāώā§āĻ āĻ āĻāĻļ c āĻā§āĻĻ āĻāϰ⧠āĻāĻŦāĻ x āĻ āĻā§āώā§āϰ āϏāĻžāĻĨā§ āϧāύāĻžāϤā§āĻŽāĻ āĻā§āĻŖ θ āĻā§āĻĒāύā§āύ āĻāϰ⧠āĻāϰā§āĻĒ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, y = mx+c
āĻāĻāĻžāύā§, m = āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞ = tanθ
                       Â
c = 0 āĻšāϞ⧠āϏāϰāϞāϰā§āĻāĻžāĻāĻŋ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āĻšāϝāĻŧ āĻāĻŦāĻ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āĻĻāĻžāĻĄāĻŧāĻžāϝāĻŧ, y = mx

9.(x1,y1) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ m āĻĸāĻžāϞ āĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ
y-y1 = m(x-x1)
10.(x1, y1) āĻ (x2,y2) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āĻāĻŦāĻ y āĻ
āĻā§āώā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āύāϝāĻŧ āĻāϰā§āĻĒ āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ,
$\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}}$
11.āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ (0,0) āĻāĻŦāĻ (x1,y1) āĻŦāĻŋāύā§āĻĻā§āϰ āϏāĻāϝā§āĻāĻāĻžāϰ⧠āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ,
(x/x1) = (y/y1)
12.x āĻ āĻā§āώ āĻĨā§āĻā§ āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻ āĻāĻļ a āĻāĻŦāĻ y āĻ āĻā§āώ āĻĨā§āĻā§ āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻ āĻāĻļ b āĻā§āĻĻ āĻāϰ⧠āĻāϰā§āĻĒ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, x/a + y/b = 1
   āϏāϰāϞāϰā§āĻāĻžāĻāĻŋ x āĻ
āĻā§āώāϰā§āĻāĻžāĻā§ (a,0) āĻāĻŦāĻ y āĻ
āĻā§āώāϰā§āĻāĻžāĻā§ (0,b) āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§
13. āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ āϝ⧠āϏāϰāϞāϰā§āĻāĻžāϰ āĻāĻĒāϰ āĻ āĻā§āĻāĻŋāϤ āϞāĻŽā§āĻŦ x āĻ āĻā§āώā§āϰ āϧāύāĻžāϤā§āĻŽāĻ āĻĻāĻŋāĻā§āϰ āϏāĻžāĻĨā§ Î āĻā§āĻŖ āĻā§āĻĒāύā§āύ āĻāϰ⧠āĻāĻŦāĻ āϝāĻžāϰ āĻāĻĒāϰ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ āĻ āĻā§āĻāĻŋāϤ āϞāĻŽā§āĻŦā§āϰ āĻĻā§āϰā§āĻā§āϝ p āϤāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, x cosθθ + ysinθθ = p
14. āĻĻā§āĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ āĻāϰāϞ⧠āϤāĻžāĻĻā§āϰ āĻā§āĻĻāĻŦāĻŋāύā§āĻĻā§āϰ āϏā§āĻĨāĻžāύāĻžāĻā§āĻ āĻĒāĻžāĻāϝāĻŧāĻž āϝāĻžāϝāĻŧ āĨ¤
15. a1x+b1y+c1 = 0 āĻāĻŦāĻ a2x+b2y+c2 = 0 āϏāϰāϞāϰā§āĻāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āĻā§āĻĻāĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ,
a1x+b1y+c1+k(a2x+b2y+c2) = 0
k-āĻāϰ āĻŦāĻŋāĻāĻŋāύā§āύ āĻŽāĻžāύā§āϰ āĻāύā§āϝ āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āĻŦāĻŋāĻāĻŋāύā§āύ āϏāϰāϞāϰā§āĻāĻž āĻĒā§āϰāĻāĻžāĻļ āĻāϰ⧠āϝāĻžāϰ āĻĒā§āϰāϤā§āϝā§āĻā§āĻ āĻāĻā§āϤ āĻā§āĻĻ āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āĨ¤
16. (x1, y1) āĻ (x2,y2) āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧ ax+by+c = 0 āϰā§āĻāĻžāϰ āĻāĻāĻ āĻĒāĻžāϰā§āĻļā§āĻŦā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻšāĻŦā§ āϝāĻĻāĻŋ a1x+b1y+c āĻāĻŦāĻ a2x+b2y+c āϰāĻžāĻļāĻŋāĻĻā§āĻŦāϝāĻŧ āĻāĻāĻ āĻāĻŋāĻšā§āύāĻŦāĻŋāĻļāĻŋāώā§āĻ āĻšāϝāĻŧ āĨ¤
17. (x1, y1) āĻ (x2,y2) āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧ ax+by+c = 0 āϰā§āĻāĻžāϰ āĻŦāĻŋāĻĒāϰā§āϤ āĻĒāĻžāϰā§āĻļā§āĻŦā§ āĻ āĻŦāϏā§āĻĨāĻŋāϤ āĻšāĻŦā§ āϝāĻĻāĻŋ a1x+b1y+c āĻāĻŦāĻ a2x+b2y+c āϰāĻžāĻļāĻŋāĻĻā§āĻŦāϝāĻŧ āĻŦāĻŋāĻĒāϰā§āϤ āĻāĻŋāĻšā§āύ āĻŦāĻŋāĻļāĻŋāώā§āĻ āĻšāϝāĻŧ āĨ¤
18. āĻĻā§āĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞ āϝāĻĨāĻžāĻā§āϰāĻŽā§ m1 āĻ m2 āĻšāϞ⧠āϤāĻžāϰāĻž āĻĒāϰāϏā§āĻĒāϰ āϞāĻŽā§āĻŦ āĻšāĻŦā§ āϝāĻĻāĻŋ m1Ãm2 = -1 āĻšāϝāĻŧ āĻāĻŦāĻ āϤāĻžāϰāĻž āĻĒāϰāϏā§āĻĒāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻšāĻŦā§ āϝāĻĻāĻŋ m1= m2 āĻšāϝāĻŧ āĨ¤
19. a1x+b1y+c1 = 0 āĻāĻŦāĻ a2x+b2y+c2 = 0 āϰā§āĻāĻžāĻĻā§āĻŦāϝāĻŧ āĻĒāϰāϏā§āĻĒāϰ āϞāĻŽā§āĻŦ āĻšāĻŦā§ āϝāĻĻāĻŋ a1a2+b1b2 = 0 āĻšāϝāĻŧ āĻāĻŦāĻ āϤāĻžāϰāĻž āĻĒāϰāϏā§āĻĒāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻšāĻŦā§ āϝāĻĻāĻŋ (a1/b1) = (a2/b2) āĻšāϝāĻŧ āĨ¤
20. āĻĻā§āĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞ āϝāĻĨāĻžāĻā§āϰāĻŽā§ m1 āĻ m2 āĻāĻŦāĻ āϤāĻžāĻĻā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤā§/āĻ āύā§āϤāϰā§āĻā§āĻā§āϤ āĻā§āĻŖ θ āĻšāϞā§,
$\tan \theta=\pm \frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$
tanθ āĻāϰ āϧāύāĻžāϤā§āĻŽāĻ āĻŽāĻžāύ āĻ āύā§āϤāϰā§āĻā§āĻā§āϤ āϏā§āĻā§āώā§āĻŽāĻā§āĻŖ āĻāĻŦāĻ āĻāĻŖāĻžāϤā§āĻŽāĻ āĻŽāĻžāύ āĻ āύā§āϤāϰā§āĻā§āĻā§āϤ āϏā§āĻĨā§āϞ āĻā§āĻŖ āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰ⧠āĨ¤
21. a1x+b1y+c1 = 0 āĻāĻŦāĻ a2x+b2y+c2 = 0 āĻāĻŦāĻ āϰā§āĻāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āĻ āύā§āϤāϰā§āĻā§āĻā§āϤ āĻā§āĻŖ θ āĻšāϞā§,
$\tan \theta=\pm \frac{a_{1} b_{2}-b_{1} a_{2}}{a_{1} a_{2}+b_{1} b_{2}}$
tanθ āĻāϰ āϧāύāĻžāϤā§āĻŽāĻ āĻŽāĻžāύ āĻ āύā§āϤāϰā§āĻā§āĻā§āϤ āϏā§āĻā§āώā§āĻŽāĻā§āĻŖ āĻāĻŦāĻ āĻāĻŖāĻžāϤā§āĻŽāĻ āĻŽāĻžāύ āĻ āύā§āϤāϰā§āĻā§āĻā§āϤ āϏā§āĻĨā§āϞ āĻā§āĻŖ āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰ⧠āĨ¤
22. ax+by+c1 = 0 āϰā§āĻāĻžāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻā§āύ⧠āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, ax+by+c2 = 0 āĻ āϰā§āĻĨāĻžā§,āĻļā§āϧ⧠āϧā§āϰā§āĻŦāĻ āĻĒāĻĻāĻāĻŋāϰ āĻĒāϰāĻŋāĻŦāϰā§āϤāύ āĻšāĻŦā§ āĨ¤
23. (x1,y1) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āĻāĻŦāĻ ax+by+c = 0 āϰā§āĻāĻžāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, a(x-x1)+b(y-y1) = 0
24. ax+by+c1 = 0 āϰā§āĻāĻžāϰ āϞāĻŽā§āĻŦ āĻā§āύ⧠āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āĻšāĻŦā§, bx-ay+c2 = 0 āĻ āϰā§āĻĨāĻžā§, x āĻ y āĻāϰ āϏāĻšāĻāĻĻā§āĻŦāϝāĻŧ āĻĒāϰāϏā§āĻĒāϰ āϏā§āĻĨāĻžāύ āĻĒāϰāĻŋāĻŦāϰā§āϤāύ āĻāϰāĻŦā§, āĻāĻĻā§āϰ āĻāĻāĻāĻŋāϰ āĻāĻŋāĻšā§āύ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻšāĻŦā§ āĻāĻŦāĻ āϧā§āϰā§āĻŦāĻ āĻĒāĻĻāĻāĻŋ āĻĒāϰāĻŋāĻŦāϰā§āϤāĻŋāϤ āĻšāĻŦā§ āĨ¤
25. (x1,y1) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āĻāĻŦāĻ ax+by+c = 0 āϰā§āĻāĻžāϰ āϞāĻŽā§āĻŦ āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, b(x-x1) â a(y-y1) = 0
26. a1x+b1y+c1 = 0; a2x+b2y+c2 = 0 āĻāĻŦāĻ a3x+b3y+c3 = 0  āϰā§āĻāĻžāϤā§āϰāϝāĻŧ āϏāĻŽāĻŦāĻŋāύā§āĻĻā§ āĻšāĻŦā§ āϝāĻĻāĻŋ,
Â
$\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0$ āĻšāϝāĻŧ āĨ¤
Â
 27. āĻāĻā§āϤ āϰā§āĻāĻžāϤā§āϰāϝāĻŧ āĻĻā§āĻŦāĻžāϰāĻž āĻāĻ āĻŋāϤ āϤā§āϰāĻŋāĻā§āĻ āĻā§āώā§āϤā§āϰā§āϰ āĻā§āώā§āϤā§āϰāĻĢāϞ = $\frac{\mathrm{D}^{2}}{2 \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}}$
āϝā§āĻāĻžāύā§, $\mathrm{D}=\left|\begin{array}{lll}\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\ \mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2} \\ \mathrm{a}_{3} & \mathrm{~b}_{3} & \mathrm{c}_{3}\end{array}\right|$ āĻāĻŦāĻ C1, C2, C3 āϝāĻĨāĻžāĻā§āϰāĻŽā§ c1, c2, c3 āĻāϰ āϏāĻšāĻā§āĻŖāĻ āĨ¤
Â
28. ax+by+c = 0 āϏāϰāϞāϰā§āĻāĻž āĻĨā§āĻā§ (x1,y1) āĻŦāĻŋāύā§āĻĻā§āϰ āϞāĻŽā§āĻŦ āĻĻā§āϰāϤā§āĻŦ,
$\mathrm{d}=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}$
29. āĻĻā§āĻāĻāĻŋ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϰā§āĻāĻž ax+by+c1 = 0 āĻ ax+by+c2 = 0 āĻāϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻĻā§āϰāϤā§āĻŦ, $\mathrm{d}=\frac{\left|c_{1}-c_{2}\right|}{\sqrt{a^{2}+b^{2}}}$
30. a1x+b1y+c1 = 0 āĻāĻŦāĻ a2x+b2y+c2 = 0 āϰā§āĻāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āĻ āύā§āϤāϰā§āĻā§āĻā§āϤ āĻā§āĻŖā§āϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāĻŖā§āĻĄāĻ āϏāϰāϞāϰā§āĻāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻŽā§āĻāϰāĻŖ,
$\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}=\pm \frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}$
- a1a2+b1b2 > 0 āĻšāϞ⧠+ āĻāĻŋāĻšā§āύāϧāĻžāϰ⧠āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āϏā§āĻĨā§āϞāĻā§āĻŖā§āϰ āĻāĻŦāĻ - āĻāĻŋāĻšā§āύāϧāĻžāϰ⧠āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āϏā§āĻā§āώā§āĻŽāĻā§āĻŖā§āϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāĻŖā§āĻĄāĻ āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰ⧠āĨ¤
- a1a2+b1b2 < 0 āĻšāϞ⧠+ āĻāĻŋāĻšā§āύāϧāĻžāϰ⧠āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āϏā§āĻā§āώā§āĻŽāĻā§āĻŖā§āϰ āĻāĻŦāĻ â āĻāĻŋāĻšā§āύāϧāĻžāϰ⧠āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ āϏā§āĻĨā§āϞāĻā§āĻŖā§āϰ āϏāĻŽāĻĻā§āĻŦāĻŋāĻāĻŖā§āĻĄāĻ āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰ⧠āĨ¤
Â
āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϏāĻŽāϏā§āϝāĻžāϰ āĻāĻĻāĻžāĻšāϰāĻŖ āĻ āϏāĻŽāĻžāϧāĻžāύÂ
Â
1. (-1,3) āĻ (4,-2) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āϏāϰāϞāϰā§āĻāĻžāϰ āĻ āĻā§āώāĻĻā§āĻŦāϝāĻŧā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻāĻŖā§āĻĄāĻŋāϤ āĻ āĻāĻļāĻā§āĻā§āϰ āĻĻā§āϰā§āĻā§āϝ āĻāϤ ?
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻā§āϤ āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ,
$\frac{x+1}{-1-4}=\frac{y-3}{3+2}$  [(x1, y1) āĻ (x2,y2) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, $\frac{x-x_{1}}{x_{1}-x_{2}}=\frac{y-y_{1}}{y_{1}-y_{2}}$ ]
â $\frac{x+1}{-5}=\frac{y-3}{5}$
â x+1 = -y+3
â x+y = 2
â x/2 + y/2 = 0   [x/a + y/b = 1 āϏāϰāϞāϰā§āĻāĻž x āĻ
āĻā§āώāĻā§ (a,0) āĻ y āĻ
āĻā§āώāĻā§ (0,b) āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§]
â´ āϏāϰāϞāϰā§āĻāĻžāĻāĻŋ x āĻ
āĻā§āώāĻā§ (2,0) āĻāĻŦāĻ y āĻ
āĻā§āώāĻā§ (0,2) āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰ⧠āĨ¤
â´ āĻ āĻā§āώāĻĻā§āĻŦāϝāĻŧā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻāĻŖā§āĻĄāĻŋāϤ āĻ āĻāĻļ = $\sqrt{(2-0)^{2}+(0-2)^{2}}$   Â
[(x1,y1) āĻ (x2,y2) āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻĻā§āϰāϤā§āĻŦ = $\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ ]
= â8
= 2â2 Â [ans.]
2. āĻāĻŽāύ āĻāĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āϝāĻž (3,2) āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ āĻ āϤāĻŋāĻā§āϰāĻŽ āĻāϰ⧠āĻāĻŦāĻ x āĻ y āĻ āĻā§āώāĻā§ āϝāĻĨāĻžāĻā§āϰāĻŽā§ A āĻ B āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤ āϝā§āύ OA-OB = 2 āĻšāϝāĻŧ, āϝāĻāύ O āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āϧāϰāĻŋ, āϏāϰāϞāϰā§āĻāĻžāĻāĻŋāϰ āϏāĻŽā§āĻāϰāĻŖ, x/a + y/b = 1                           
āϏāϰāϞāϰā§āĻāĻžāĻāĻŋ (3,2) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āĨ¤Â          Â
â´ 3/a + 2/b = 1Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â
â 3b+2a = ab ...(i)                                Â
āĻāĻŦāĻžāϰ, OA-OB = 2
â a-b = 2
â a = 2+b
â´ (i) â 3b+2(2+b) = (2+b)b
â b2-3ab-4 = 0
â b = 4, -1
āϝāĻāύ, b = 4 āϤāĻāύ, a = 6
â´ x/6 + y/4 = 1
â 2x+3y = 12Â Â [ans.]
āϝāĻāύ, b = -1 āϤāĻāύ, a = 1
â´ x/1 + y/-1 = 1
â x-y = 1   [ans.]
Â
3. ax+by = c āĻāĻŦāĻ x cosι + y sinι = p āĻāĻāĻ āϏāϰāϞāϰā§āĻāĻž āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰāϞ⧠p āĻāϰ āĻŽāĻžāύ a,b āϤ⧠āĻĒā§āϰāĻāĻžāĻļ āĻāϰ āĨ¤
āϏāĻŽāĻžāϧāĻžāύāĻ
â´Â $\frac{a}{\cos \alpha}=\frac{b}{\sin \alpha}=\frac{c}{p}$
â $\frac{a^{2}}{\cos ^{2} \alpha}=\frac{b^{2}}{\sin ^{2} \alpha}=\frac{c^{2}}{p^{2}}$
â $\frac{c^{2}}{p^{2}}=\frac{a^{2}+b^{2}}{\cos ^{2} \alpha+\sin ^{2} \alpha}$
â $\frac{c^{2}}{p^{2}}=\mathrm{a}^{2}+\mathrm{b}^{2}$
â $\mathrm{p}^{2}=\frac{c^{2}}{a^{2}+b^{2}}$
â´Â $\mathrm{p}=\pm \frac{c}{\sqrt{a^{2}+b^{2}}}$Â Â Â Â Â Â Â [answer]
Â
4. āĻāĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻž āĻ āĻā§āώ āĻĻā§āĻāĻāĻŋ āĻĨā§āĻā§ āϏāĻŽāĻŽāĻžāύā§āϰ āϝā§āĻāĻŦā§āϧāĻ āĻ āĻāĻļ āĻā§āĻĻ āĻāϰ⧠āĨ¤ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ āϤāĻžāϰ āĻāĻĒāϰ āĻ āĻā§āĻāĻŋāϤ āϞāĻŽā§āĻŦā§āϰ āĻĻā§āϰā§āĻā§āϝ 4 āĻāĻāĻ āĨ¤ āϤāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āĻŦā§āϰ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āϏāϰāϞāϰā§āĻāĻžāĻāĻŋ āĻ
āĻā§āώ āĻĻā§āĻāĻāĻŋ āĻĨā§āĻā§ āϏāĻŽāĻŽāĻžāύā§āϰ āϝā§āĻāĻŦā§āϧāĻ a āĻ
āĻāĻļ āĻā§āĻĻ āĻāϰāϞā§,
āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, x/a + y/a = 1
â x+y = a ...(i)
āĻāĻŦāĻžāϰ, āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ āϏāϰāϞāϰā§āĻāĻžāĻāĻŋāϰ āĻāĻĒāϰ āĻ
āĻā§āĻāĻŋāϤ āϞāĻŽā§āĻŦ āϝāĻĻāĻŋ x āĻ
āĻā§āώā§āϰ āϧāύāĻžāϤā§āĻŽāĻ āĻĻāĻŋāĻā§āϰ āϏāĻžāĻĨā§ Îą āĻā§āĻŖ āĻā§āĻĒāύā§āύ āĻāϰ⧠āϤāĻŦā§,
āϏāϰāϞāϰā§āĻāĻžāĻāĻŋāϰ āϏāĻŽā§āĻāϰāĻŖ, x cosι + y sinι = 4
âĩ (i) āĻ (ii) āĻāĻāĻ āϏāϰāϞāϰā§āĻāĻž āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰā§
â´ 1/cosÎą = 1/sinÎą = a/4
â $\frac{1}{\cos ^{2}}=\frac{1}{\sin ^{2}}=\frac{a^{2}}{16}$
â $\frac{a^{2}}{16}=\frac{1+1}{\cos ^{2}+\sin ^{2}}$
â a2 = 16Ã2
â a = 4â2Â Â Â Â Â Â [answer]
Â
5. k āĻāϰ āϏāĻŦ āĻŽāĻžāύā§āϰ āĻāύā§āϝ āĻāĻāĻā§āĻā§āĻ āϏāϰāϞāϰā§āĻāĻž (3+2k)x+5ky-3 = 0 āĻāĻāĻāĻŋ āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§āĨ¤ āĻŦāĻŋāύā§āĻĻā§āĻāĻŋāϰ āϏā§āĻĨāĻžāύāĻžāĻāĻ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰāĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§, (3+2k)x+5ky-3 = 0
â 3x+2kx+5ky-3 = 0
â 3x-3+k(2x+5y) = 0 ...(i)
(i) āϏāĻŽā§āĻāϰāĻŖāĻāĻŋ 3x-3=0 â x-1=0 â x=1 āĻāĻŦāĻ 2x+5y=0 āϏāϰāϞāϰā§āĻāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āĻā§āĻĻāĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ āϏāĻāϞ āϰā§āĻāĻžāϰ āĻāύā§āϝ āϏāϤā§āϝ āĨ¤
x=1 āĻāĻŦāĻ 2x+5y=0 āϏāĻŽāĻžāϧāĻžāύ āĻāϰ⧠āĻĒāĻžāĻ,
x=1, y=-2/5
â´ (1,-2/5) āύāĻŋāϰā§āĻŖā§āϝāĻŧ āĻŦāĻŋāύā§āĻĻā§ āĨ¤ [ans.]
Â
6. (-1,2) āĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ āϝāĻžāϝāĻŧ āĻāĻŦāĻ 3x-y+7=0 āϰā§āĻāĻžāϰ āϏāĻžāĻĨā§ 45° āĻā§āĻŖ āĻā§āĻĒāύā§āύ āĻāϰ⧠āĻāϰā§āĻĒ āϰā§āĻāĻžāĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻŽā§āĻāϰāĻŖ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
Â
āĻāĻāĻžāύā§, 3x-y+7=0 āϰā§āĻāĻžāϰ āĻĸāĻžāϞ = -(3/-1) = 3       [ax+by+c=0 āϰā§āĻāĻžāϰ āĻĸāĻžāϞ = -(a/b) ]
āĻāĻā§āϤ āϰā§āĻāĻžāϰ āϏāĻžāĻĨā§ 45° āĻā§āĻŖ āĻā§āĻĒāύā§āύ āĻāϰ⧠āĻāϰā§āĻĒ āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞ m āĻšāϞā§,
tan 45° = ¹(3-m)/(1+3m)
â 1 = Âą (3-m)/(1+3m) Â Â Â Â
Â
      Â
[āĻĻā§āĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞ m1 āĻ m2 āĻāĻŦāĻ āϤāĻžāĻĻā§āϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻā§āĻŖ θ āĻšāϞā§, $\tan \theta=\pm \frac{m_{1}-m_{2}}{1+m_{1} m_{2}}$]
â+â āύāĻŋāϝāĻŧā§ āĻĒāĻžāĻ, 3-m = 1+3m      â 4m = 2      â m = ÂŊ
â-â āύāĻŋāϝāĻŧā§ āĻĒāĻžāĻ, -3+m = 1+3m     â 2m = -4     â m = -2
â´ (-1,2) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ m = ÂŊ āĻĸāĻžāϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ,
y-2 = ÂŊ (x+1)        [(x1,y1) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ m āĻĸāĻžāϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, y-y1 = m(x-x1)]
â 2y-4 = x+1
â x-2y+5 = 0Â Â Â [ans.]
āĻāĻŦāĻžāϰ, (-1,2) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ m = -2 āĻĸāĻžāϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ,
y-2 = -2(x+1)
â y-2 = -2x-2
â 2x+y = 0Â Â Â Â [ans.]
Â
7. y āĻ āĻā§āώā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻāĻŦāĻ 2x-3y+4 = 0 āĻ 3x+3y-5 = 0 āϰā§āĻāĻž āĻĻā§āĻāĻāĻŋāϰ āĻā§āĻĻāĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ āϝāĻžāϝāĻŧ āĻāϰā§āĻĒ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
2x-3y+4 = 0
3x+3y-5 = 0
āϏāĻŽāĻžāϧāĻžāύ āĻāϰā§, x = 1/5, y = 22/15          [use calculator to solve equations to save time]
âĩ āϏāϰāϞāϰā§āĻāĻžāĻāĻŋ y āĻ
āĻā§āώā§āϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ
â´ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, x = 1/5
â 5x-1 = 0Â Â Â Â [ans.]
Â
8. āĻāĻŽāύ āĻāĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āϝāĻž 2x+3y+4 = 0 āĻāĻŦāĻ 3x+4y-5 = 0 āϰā§āĻāĻž āĻĻā§āĻāĻāĻŋāϰ āĻā§āĻĻāĻŦāĻŋāύā§āĻĻā§ āĻĻāĻŋāϝāĻŧā§ āϝāĻžāϝāĻŧ āĻāĻŦāĻ 6x-7y+8 = 0 āϰā§āĻāĻžāϰ āĻāĻĒāϰ āϞāĻŽā§āĻŦāĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
2x+3y+4 = 0 āĻ 3x+4y-5 = 0 āĻāϰ āĻā§āĻĻāĻŦāĻŋāύā§āĻĻā§āϰ āϏā§āĻĨāĻžāύāĻžāĻāĻ âĄ (-33,22) [use calculator]
â´ (-33,22) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ 6x-7y+8 = 0 āϰā§āĻāĻžāϰ āϞāĻŽā§āĻŦ āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, -7(x+31)-6(y-22) = 0 Â
[(x1,y1) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ ax+by+c = 0 āϰā§āĻāĻžāϰ āϞāĻŽā§āĻŦ āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, b(x-x1)-a(y-y1)=0]
â -7x-217-6y+132 = 0
â 7x+6y-85 = 0Â Â Â Â Â Â Â Â Â [ans.]
Â
9. (8,5), (-4,3) āĻŦāĻŋāύā§āĻĻā§ āĻĻā§āĻāĻāĻŋāϰ āϏāĻāϝā§āĻāĻ āϰā§āĻāĻžāϰ āϞāĻŽā§āĻŦ āĻĻā§āĻŦāĻŋāĻāĻŖā§āĻĄāĻā§āϰ āϏāĻŽā§āĻāϰāĻŖ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻā§āϤ āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻāϝā§āĻāĻ āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞ = (5-3)/(8+4) = 1/6     [ āĻĸāĻžāϞ = āĻā§āĻāĻŋāĻĻā§āĻŦā§ā§āϰ āĻ
āύā§āϤāϰ / āĻā§āĻāĻĻā§āĻŦā§ā§āϰ āĻ
āύā§āϤāϰ ]
â´ āĻāĻā§āϤ āϏāϰāϞāϰā§āĻāĻžāϰ āϞāĻŽā§āĻŦ āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞ = $-\frac{1}{1 / 6}$  = -6    Â
[āĻĻā§āĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāϰ āĻĸāĻžāϞā§āϰ āĻā§āĻŖāĻĢāϞ -1 āĻšāϞ⧠āϤāĻžāϰāĻž āĻĒāϰāϏā§āĻĒāϰ āϞāĻŽā§āĻŦ]
(8,5),(-4,3) āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻāϝā§āĻāĻ āϏāϰāϞāϰā§āĻāĻžāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ âĄ $\left(\frac{8-4}{2}, \frac{5+3}{2}\right) \mid$ ⥠(2,4)
[(x1,y1) āĻ (x2,y2) āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻāϝā§āĻāĻ āϏāϰāϞāϰā§āĻāĻžāϰ āĻŽāϧā§āϝāĻŦāĻŋāύā§āĻĻā§ âĄ $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ ]
â´ (2,4) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ -6 āĻĸāĻžāϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ,
y-4 = -6(x-2)   [(x1,y1) āĻŦāĻŋāύā§āĻĻā§āĻāĻžāĻŽā§ m āĻĸāĻžāϞāĻŦāĻŋāĻļāĻŋāώā§āĻ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, y-y1 = m(x-x1)]
â y-4 = -6x+12
â 6x-y+26 = 0Â Â Â Â Â Â Â Â Â Â Â [answer.]
Â
10. āĻāĻŽāύ āĻāĻāĻāĻŋ āϏāϰāϞāϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āϝāĻžāϰ āĻ āĻā§āώ āĻĻā§āĻāĻāĻŋāϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻāĻŖā§āĻĄāĻŋāϤ āĻ āĻāĻļ (-4,3) āĻŦāĻŋāύā§āĻĻā§āϤ⧠5:3 āĻ āύā§āĻĒāĻžāϤ⧠āĻ āύā§āϤāϰā§āĻŦāĻŋāĻāĻā§āϤ āĻšāϝāĻŧāĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āϧāϰāĻŋ, āϏāϰāϞāϰā§āĻāĻžāĻāĻŋāϰ āϏāĻŽā§āĻāϰāĻŖ, x/a+y/b = 1
āĻ
āϰā§āĻĨāĻžā§ āϏāϰāϞāϰā§āĻāĻžāĻāĻŋ x āĻ
āĻā§āώāĻā§ (a,0) āĻ y āĻ
āĻā§āώāĻā§ (0,b) āĻŦāĻŋāύā§āĻĻā§āϤ⧠āĻā§āĻĻ āĻāϰā§āĨ¤
â´ āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻāϝā§āĻāĻ āϰā§āĻāĻž āϝ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠5:3 āĻ
āύā§āĻĒāĻžāϤ⧠āĻ
āύā§āϤāϰā§āĻŦāĻŋāĻāĻā§āϤ āĻšāϝāĻŧ āϤāĻžāϰ,
āϏā§āĻĨāĻžāύāĻžāĻāĻ âĄ $\left(\frac{5 \times 0+3 \times a}{5+3}, \frac{5 \times b+3 \times 0}{5+3}\right)$ ⥠(3a/8, 5b/8)
[(x1,y1) āĻ (x2,y2) āĻŦāĻŋāύā§āĻĻā§āĻĻā§āĻŦāϝāĻŧā§āϰ āϏāĻāϝā§āĻāĻ āϏāϰāϞāϰā§āĻāĻž āϝ⧠āĻŦāĻŋāύā§āĻĻā§āϤ⧠m1:m2 āĻ āύā§āĻĒāĻžāϤ⧠āĻ āύā§āϤāϰā§āĻŦāĻŋāĻāĻā§āϤ āĻšāϝāĻŧ, āϤāĻžāϰ āϏā§āĻĨāĻžāύāĻžāĻāĻ âĄ $\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$ ]
āĻāĻŋāύā§āϤā§, 3a/8 = -4
â a = -4(8/3)
â a = -32/3
āĻāĻŦāĻ, 5b/8 = 3
â b = 3(8/5)
â b = 24/3
â´ āϏāϰāϞāϰā§āĻāĻžāĻāĻŋāϰ āϏāĻŽā§āĻāϰāĻŖ, $\frac{x}{-32 / 3}+\frac{y}{24 / 5}=1$
â -3x/32 + 5y/24 = 1
â 9x-20y = -96
â 9x-20y+96 = 0Â Â Â Â Â [answer.]
Â
11. 12x-5y = 7 āϰā§āĻāĻžāϰ 2 āĻāĻāĻ āĻĻā§āϰāĻŦāϰā§āϤ⧠āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
12x-5y-7 = 0 āϰā§āĻāĻžāϰ āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āĻā§āύ āϰā§āĻāĻžāϰ āϏāĻŽā§āĻāϰāĻŖ, 12x-5y+c=0
āĻĒā§āϰāĻļā§āύāĻŽāϤā§, $\frac{|c+7|}{\sqrt{12^{2}+5^{2}}}=2$ = 2    Â
[ax+by+c1=0 āĻ ax+by+c2=0 āϏāĻŽāĻžāύā§āϤāϰāĻžāϞ āϰā§āĻāĻžāϰ āĻŽāϧā§āϝāĻŦāϰā§āϤ⧠āĻĻā§āϰāϤā§āĻŦ = $\frac{\left|c_{1}+c_{2}\right|}{\sqrt{a^{2}+b^{2}}}$ ]
â Âą (c+7) = 26
āĻšāϝāĻŧ, c+7 = 26               āĻ
āĻĨāĻŦāĻž, -c-7 = 26
â c = 19Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â â c =-33
â´ āύāĻŋāϰā§āĻŖā§āϝāĻŧ āϰā§āĻāĻžāĻāĻļ, 12x-5y+19 = 0  āĻāĻŦāĻ 12x-5y-33 = 0
Â
12. x-3y+2=0; x-6y+3=0; x+ay=0 āϰā§āĻāĻž āϤāĻŋāύāĻāĻŋ āϏāĻŽāĻŦāĻŋāύā§āĻĻā§ āĻšāϞ⧠a āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
âĩ āϰā§āĻāĻžāϤā§āϰāϝāĻŧ āϏāĻŽāĻŦāĻŋāύā§āĻĻā§ Â
            â´Â  $\left|\begin{array}{lll}1 & -3 & 2 \\ 1 & -6 & 3 \\ 1 & \text { a } & 0\end{array}\right|=0$
            â $\left|\begin{array}{lcc}0 & 3 & -1 \\ 0 & -(\mathrm{a}+6) & 3 \\ 1 & \mathrm{a} & 0\end{array}\right|=0$  [r1´= r1-r2 ; r2´= r2-r3]
            â 9-(a+6) = 0
            ⴠa = 3 [Answer.]
Â
13. 4x+3y = c āĻāĻŦāĻ 12x-5y = 2(c+3) āϰā§āĻāĻž āĻĻā§āĻāĻāĻŋ āĻŽā§āϞāĻŦāĻŋāύā§āĻĻā§ āĻĨā§āĻā§ āϏāĻŽāĻĻā§āϰāĻŦāϰā§āϤ⧠āĨ¤ c āĻāϰ āϧāύāĻžāϤā§āĻŽāĻ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖāϝāĻŧ āĻāϰ āĨ¤
Â
āϏāĻŽāĻžāϧāĻžāύāĻ
āĻāĻāĻžāύā§,Â
$\frac{|4 \times 0+3 \times 0-c|}{\sqrt{4^{2}+3^{2}}}=\frac{|12 \times 0-5 \times 0-2(c+3)|}{\sqrt{12^{2}+5^{2}}}$
â c/5 = 2(c+3)/13
â 13c = 10c+30
â c = 10Â Â Â Â Â Â Â Â Â [Answer.]