āϏāĻžāϧāĻžāϰāĻŖ āϘāϟāύāĻžÂ 
  • āĻ…āύ⧁āĻ•ā§āϰāĻŽ (Sequence) : āĻ…āύ⧁āĻ•ā§āϰāĻŽ āĻšāϞ⧋ āĻāĻ•āϟāĻŋ āĻĢāĻžāĻ‚āĻļāύ āϝāĻžāϰ āĻĄā§‹āĻŽā§‡āύ N āĻāĻŦāĻ‚ āϰ⧇āĻžā§āϜ R āĻāϰ āωāĻĒāϏ⧇āϟ āĨ¤ āĻ…āύ⧁āĻ•ā§āϰāĻŽāϕ⧇ āĻĢāĻžāĻ‚āĻļāύ⧇āϰ āϰ⧇āĻžā§āϜ āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāĻ°ā§āĻĻ⧇āĻļ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤ āϝ⧇āĻŽāύ :

u : N → S āϕ⧋āύ⧋ āĻĢāĻžāĻ‚āĻļāύ āĻšāϞ⧇ (āϝ⧇āĻ–āĻžāύ⧇ n ∈ N, S ⊂ R ) u(n) ∈ S āϕ⧇ n āĻāϰ āĻĒā§āϰ⧇āĻ•ā§āώāĻŋāϤ⧇ u āĻāϰ āĻĒā§āϰāϤāĻŋāĻšā§āĻ›āĻŦāĻŋ āĻŦāϞāĻž āĻšā§Ÿ āĨ¤ āĻāϕ⧇ un āĻĻā§āĻŦāĻžāϰāĻž āϏ⧂āϚāĻŋāϤ āĻ•āϰāĻž āĻšā§Ÿ āĨ¤

∴ u āĻāϰ āϰ⧇āĻžā§āϜ : {u1, u2, u3, ......, u n, ......}

∴ u1, u2, u3, ......, un, ...... āĻāĻ•āϟāĻŋ āĻ…āύ⧁āĻ•ā§āϰāĻŽ āĨ¤

  • āϧāĻžāϰāĻž (Series) : āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻāĻ•āϟāĻŋ āĻ…āύ⧁āĻ•ā§āϰāĻŽ u1, u2, u3, ......, un, ...... āĻšāϞ⧇ u 1+u2+u3+......+un+...... āϕ⧇ āĻŦāĻžāĻ¸ā§āϤāĻŦ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻ…āϏ⧀āĻŽ āϧāĻžāϰāĻž āĻŦāĻž āĻ…āύāĻ¨ā§āϤ āϧāĻžāϰāĻž (Infinite series) āĻŦāϞ⧇ āĨ¤ u n āĻšāϞ āĻ…āϏ⧀āĻŽ āϧāĻžāϰāĻžāϰ n āϤāĻŽ āĻĒāĻĻ āĨ¤ āϧāĻžāϰāĻžāϰ āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟ āĻĨāĻžāĻ•āϞ⧇ āϤāĻžāϕ⧇ āϏāĻžāĻ¨ā§āϤ āϧāĻžāϰāĻž (Finite Series) āĻŦāϞ⧇ āĨ¤
  • āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻž (Arithmetic Series) : āĻāĻ•āϟāĻŋ āĻāĻ•āϟāĻŋ āϏāĻžāĻ¨ā§āϤ āĻŦāĻž āϏāϏ⧀āĻŽ āϧāĻžāϰāĻž āĨ¤ āϝ⧇ āϏāĻžāĻ¨ā§āϤ āϧāĻžāϰāĻžā§Ÿ āϝ⧇āϕ⧋āύ⧋ āĻĒāĻĻāϕ⧇ āϤāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āĻĒāĻĻ āĻĨ⧇āϕ⧇ āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰāϞ⧇ āĻāĻ•āχ āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāĻž āϰāĻžāĻļāĻŋ āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§Ÿ, āϤāĻžāϕ⧇ āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻž āĻŦāϞ⧇ āĻāĻŦāĻ‚ āϐ āĻŦāĻŋā§Ÿā§‹āĻ—āĻĢāϞāϕ⧇ āϧāĻžāϰāĻžāϰ āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ āĻŦāϞ⧇ āĨ¤ āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ āϧāύāĻžāĻ¤ā§āĻŽāĻ• āĻŦāĻž āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ• āĻšāϤ⧇ āĻĒāĻžāϰ⧇ āĨ¤

āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ a āĻāĻŦāĻ‚ āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ d āĻšāϞ⧇,

n āϤāĻŽ āĻĒāĻĻ = a + (n-1)d

āĻĒā§āϰāĻĨāĻŽ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻĒāĻĻ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ, Sn = (n/2){2a+(n-1)d}

āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻž (Geometric Series) : āϝ⧇ āϧāĻžāϰāĻžā§Ÿ āϕ⧋āύ⧋ āĻĒāĻĻ⧇āϰ āϏāĻžāĻĨ⧇ āϤāĻžāϰ āĻĒāϰāĻŦāĻ°ā§āϤ⧀ āĻĒāĻĻ⧇āϰ āĻ…āύ⧁āĻĒāĻžāϤ āϏāĻŦ āϏāĻŽā§Ÿ āϏāĻŽāĻžāύ āĻšā§Ÿ āϤāĻžāϕ⧇ āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻž āĻŦāϞ⧇ āĨ¤ āϝ⧇āĻŽāύ : a+ar+ar 2+......+arn-1 āĻāĻ•āϟāĻŋ āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻž āĨ¤

āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ a āĻāĻŦāĻ‚ āϏāĻžāϧāĻžāϰāĻŖ āĻ…āύ⧁āĻĒāĻžāϤ r āĻšāϞ⧇,

n āϤāĻŽ āĻĒāĻĻ = arn-1

āĻĒā§āϰāĻĨāĻŽ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻĒāĻĻ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ, Sn = a{(rn-1)/(r-1)} āϝāĻ–āύ r>1

= a{(1-rn)/(1-r)} āϝāĻ–āύ r<1

āφāĻŦāĻžāϰ, āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻĒāĻĻāϏāĻ‚āĻ–ā§āϝāĻž āĻ…āϏ⧀āĻŽ āĻāĻŦāĻ‚ âˆŖrâˆŖ<1 (āĻ…āĻ°ā§āĻĨāĻžā§Ž -1<r<1) āĻšāϞ⧇,

āϧāĻžāϰāĻžāϟāĻŋāϰ āĻ…āϏ⧀āĻŽāϤāĻ• āϏāĻŽāĻˇā§āϟāĻŋ (sum up to infinity), SÎą = a/(1-r)

  • āĻĒā§āϰāĻĨāĻŽ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ : $\sum n=\{\mathrm{n}(\mathrm{n}+1)\} / 2$
  • āĻĒā§āϰāĻĨāĻŽ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āϗ⧇āϰ āϝ⧋āĻ—āĻĢāϞ : $\sum n^{2}=(1 / 6) \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)$
  • āĻĒā§āϰāĻĨāĻŽ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϘāύ⧇āϰ āϝ⧋āĻ—āĻĢāϞ : $\sum n^{3}=\left\{\frac{n(n+1)^{2}}{2}\right\}^{2}$
  • āĻĒā§āϰāĻĨāĻŽ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āĻŦāĻŋāĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ : $\sum 2 n-1=\mathrm{n}^{2}$
  • āĻĒā§āϰāĻĨāĻŽ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ : $\sum 2 n$ = n(n+1)

 

āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻžāϰ āωāĻĻāĻžāĻšāϰāĻŖ āĻ“ āϏāĻŽāĻžāϧāĻžāĻ¨Â 

 

1. n āϏāĻ‚āĻ–ā§āϝāĻ• āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϝ⧋āĻ—āĻĢāϞ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ : 1.2+2.5+3.8+.........

āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϧāĻžāϰāĻžāϟāĻŋāϰ āĻĒāĻĻāϗ⧁āϞ⧋ āĻĻ⧁āϟāĻŋ āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻžāϰ āϗ⧁āĻŖāĻĢāϞ āϰ⧂āĻĒ⧇ āĻĒā§āϰāĻ•āĻžāĻļāĻŋāϤ āϝāĻžāϰ āĻāĻ•āϟāĻŋ āĻšāϞ : 1+2+3+.........

∴ n āϤāĻŽ āĻĒāĻĻ = 1+(n-1)1 [see āϏāĻŽāĻžāĻ¨ā§āϤāϰ āϧāĻžāϰāĻž]

= n

∴ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϧāĻžāϰāĻžāϰ āϏāĻžāϧāĻžāϰāĻŖ āĻĒāĻĻ, un = n(3n-1) = 3n2-n

∴ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϧāĻžāϰāĻžāϰ n āϤāĻŽ āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϝ⧋āĻ—āĻĢāϞ,

$\mathrm{S}_{\mathrm{n}}=3 \sum n^{2}-\sum n$

= 3(1/6)n(n+1)(2n+1) – {n(n+1)}/2 [see n āϏāĻ‚āĻ–ā§āϝāĻ• āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āĻ“ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āϗ⧇āϰ āϝ⧋āĻ—āĻĢāϞ]

= {n(N+1)(2n+1)}/2 – {n(n+1)}/2

= ÂŊ n(n+1)(2n+1-1)

= n2(n+1)

[āϞāĻ•ā§āώāĻŖā§€ā§Ÿ, āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āϤāĻŋāύāϟāĻŋ āĻĒāĻĻ⧇āϰ āϗ⧁āĻŖāĻĢāϞ āϰ⧂āĻĒ⧇ āĻĒā§āϰāĻ•āĻžāĻļāĻŋāϤ āϧāĻžāϰāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āĻāχ āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžā§Ÿ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĻž āϝāĻžā§Ÿ]

 

2. āϝ⧋āĻ—āĻĢāϞ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ : 22+42+62 +.........+(2n)2

āĻāĻ–āύ, 22+42+62+.........+(2n)2

= 2212+2222+223 2+.........+22n2

= 22(12+22+32+.........+n 2)

= 4(1/6)n(n+1)(2n+1) [see n āϏāĻ‚āĻ–ā§āϝāĻ• āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦāĻ°ā§āϗ⧇āϰ āϝ⧋āĻ—āĻĢāϞ]

= (2/3)n(n+1)(2n+1)

3. n āϤāĻŽ āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϝ⧋āĻ—āĻĢāϞ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ : 1.4.7+4.7.10+7.10.13+.........

āĻāĻ–āĻžāύ⧇, un = (3n-2)(3n+1)(3n+4)...(i) [see examole 1]

∴ un+1 = (3n+1)((3n+4)(3n+7)...(ii)

(i)/(ii) ⇒ un/(un+1) = (3n-2)/(3n+7)

⇒ (3n+7)un = (3n-2)un+1 ...(iii)

āϧāϰāĻŋ, vn = (3n+7)un ...(iv)

∴ vn+1 = (3n+10)un+1 ...(v)

∴ (v)-(vi) ⇒ vn+1 - vn = (3n+10)un+1 – (3n+7) un

= (3n+10)un+1 –(3n-2)un+1 [(iii) āĻ…āύ⧁āϏāĻžāϰ⧇]

= 12un+1

∴ un+1 = (1/12)(vn+1 - vn)...(vi)

(vi) āĻ n = 1,2,3...... āĻŦāϏāĻŋā§Ÿā§‡ āĻĒāĻžāχ,

u1 = (1/12)(v1-v0)

u2 = (1/12)(v2-v1)

... ... ... ... ...

... ... ... ... ...

un = (1/12)(vn-vn-1)

_____________________________

(+) āĻ•āϰ⧇, Sn = u1+u2+u3+......+u n = (1/12)(vn-v0)

(iv) āĻ n = 0 āĻŦāϏāĻŋā§Ÿā§‡ āĻĒāĻžāχ, v0 = 37.u0

= -56 [(i) āĻĨ⧇āϕ⧇ āĻāϰ āĻŽāĻžāύ āĻŦāϏāĻŋā§Ÿā§‡]

∴ Sn = (1/12)(vn-v0)

= (1/12)(3n+7)un + (56/12)

= (14/3) + (1/12)(3n-2)(3n+1)(3n+4)(3n+7)

āĻļāĻ°ā§āϟāĻ•āĻžāĻ°ā§āϟ : āϕ⧋āύ⧋ āϧāĻžāϰāĻžāϰ āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻĒāĻĻ āϏāĻŽāĻžāĻ¨ā§āϤāϰ āĻļā§āϰ⧇āĻŖāĻŋāϭ⧁āĻ•ā§āϤ āĻšāϞ⧇ āĻ…āĻ°ā§āĻĨāĻžā§Ž āϏāĻžāϧāĻžāϰāĻŖ āĻĒāĻĻ⧇āϰ āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻ‰ā§ŽāĻĒāĻžāĻĻāϕ⧇āϰ āĻ…āĻ¨ā§āϤāϰ āĻāĻ•āχ āĻšāϞ⧇ āĻāĻŦāĻ‚ ‍āĻ‰ā§ŽāĻĒāĻžāĻĻāϗ⧁āϞ⧋āϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ āĻāĻ•āχ āϏāĻŽāĻžāĻ¨ā§āϤāϰ āĻļā§āϰ⧇āĻŖāĻŋāϭ⧁āĻ•ā§āϤ āĻšāϞ⧇ āύāĻŋāĻŽā§āύ⧋āĻ•ā§āϤ āϏ⧂āĻ¤ā§āϰ āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰ⧇ āϏāĻšāĻœā§‡āχ āϧāĻžāϰāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĻž āϝāĻžā§Ÿ āĨ¤

Sn = {(āĻāĻ•āχ āϏāĻŽāĻžāĻ¨ā§āϤāϰ āĻĒā§āϰāĻ—āĻŽāύ⧇āϰ āĻāĻ•āϟāĻŋ āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ•)/(āĻ…āϤāĻŋāϰāĻŋāĻ•ā§āϤ āĻ‰ā§ŽāĻĒāĻžāĻĻāύ āϏāĻš āĻŽā§‹āϟ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āϏāĻ‚āĻ–ā§āϝāĻž × āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ)} + āĻ§ā§āϰ⧁āĻŦāĻ• C

āφāϞ⧋āĻšā§āϝ āĻĒā§āϰāĻļā§āύ⧇ āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϧāĻžāϰāĻžāϰ Un = (3n-2)(3n+1)(3n+4)

āĻāĻ–āĻžāύ⧇, (3n-1)-(3n-2) = (3n+4)-(3n+1) = 3 = āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ

āĻĒā§āϰāϤāĻŋāϟāĻŋ āĻ‰ā§ŽāĻĒāĻžāĻĻāϕ⧇āϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ = 3n

∴ Sn = {(3n-2)(3n+1)(3n+4)(3n+7)}/(4×3) + C

C āĻāϰ āĻŽāĻžāύ āύāĻŋāĻ°ā§āĻŖā§Ÿā§‡āϰ āϜāĻ¨ā§āϝ n = 1 āĻŦāϏāĻŋā§Ÿā§‡ Sn = S1 = U 1 āĻĨ⧇āϕ⧇ āĻ…āĻĨāĻŦāĻž n = 0 āĻŦāϏāĻŋā§Ÿā§‡ Sn = S0 = 0 āĻĨ⧇āϕ⧇ āĻŦ⧇āϰ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ āĨ¤

āĻāĻ•ā§āώ⧇āĻ¤ā§āϰ⧇, n = 0 āĻŦāϏāĻŋā§Ÿā§‡ āĻĒāĻžāχ, 0 = -(56/12) + C

⇒ C = 14/3

∴ Sn = (14/3) + (1/12)(3n-2)(3n+1)(3n+4)(3n+7)

āĻāĻ•āχ āĻĒā§āϰāĻ•ā§āϰāĻŋ⧟āĻžā§Ÿ āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ āϰ⧂āĻĒ⧇āϰ āϧāĻžāϰāĻžāϰ āϏāĻŽāĻˇā§āϟāĻŋ āύāĻŋāĻ°ā§āĻŖā§Ÿā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇,

Sn = āĻ§ā§āϰ⧁āĻŦāĻ• C – 1/{(āĻāϰ āĻĒā§āϰāĻĨāĻŽ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āĻŦāĻžāĻĻ⧇ āĻ…āĻ¨ā§āϝāϗ⧁āϞ⧋) × āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āϏāĻ‚āĻ–ā§āϝāĻž × āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ}

[āĻ­āĻžāϞ⧋āĻ­āĻžāĻŦ⧇ āĻŦ⧁āĻāϤ⧇ Example 4 āĻĻ⧇āϖ⧁āύ]

 

4. n āϤāĻŽ āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϝ⧋āĻ—āĻĢāϞ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ : 1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + .........

āĻāĻ–āĻžāύ⧇, un = 1/{n(n+1)(n+2)} [see example 1 for details]

∴ Sn = C – 1/{(n+1)(n+2)×2×1} [see example 3 short-cut]

n = 0 āĻŦāϏāĻŋā§Ÿā§‡ āĻĒāĻžāχ, 0 = C-(1/4)

⇒ C = (1/4)

∴ Sn = 1/4 – 1/{2(n+1)(n+2)}

5. 7+77+777+......... āϧāĻžāϰāĻžāϟāĻŋāϰ n āϏāĻ‚āĻ–ā§āϝāĻ• āĻĒāĻĻ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰ āĨ¤

āϧāϰāĻŋ, S = 7+77+777+...... n āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ

⇒ S/7 = 1+11+111+...... n āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ

⇒ 9S/7 = 9+99+999+...... n āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ

= (10-1)+(100-1)+(1000-1)+...... n āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ

= (10+102+103+......+10n)-(1+1+1+......+1) n āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ

= 10(1+10+102+......+10n)-n [ = n]

= 10{(10n-1)/(10-1)}-n [see āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻžāϰ n āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϏāĻŽāĻˇā§āϟāĻŋ]

= (10/9)(10n-1)-n

∴ S = 7/9{(10/9)(10n-1)-n}

āĻļāĻ°ā§āϟāĻ•āĻžāĻ°ā§āϟ :

a+aa+aaa+...... āϧāĻžāϰāĻžāϟāĻŋāϰ n āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϏāĻŽāĻˇā§āϟāĻŋ,

Sn = (a/9){(10/9)(10n-1)-n}

 

6. 3/21 + 9/21 + 27/21 + 81/21 + .........āĻāϰ āĻŽāĻžāύ āĻ•āϤ?

āĻāĻ–āĻžāύ⧇, 3/21 + 9/21 + 27/21 + 81/21 + .........

= 1 + 3/21 + 9/21 + 27/21 + 81/21 + ......... – 1

= c3-1 [see āĻĻā§āĻŦāĻŋāĻĒāĻĻā§€ āωāĻĒāĻĒāĻžāĻĻā§āϝ- some important series to remember viii ]

 

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ āĻ“ āϏāĻŽāĻžāϧāĻžāĻ¨Â 

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āύ :

1. 1/2 + (-1/4) + 1/8 + (-1/16) + ...... āϧāĻžāϰāĻžāϰ āĻ…āϏ⧀āĻŽ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻŽāĻžāύ āĻ•āϤ? [DU : 2000-01]

a. 1/4

b. 1/3

c. 1/2

d. 1/8

 

2. 1 āĻĨ⧇āϕ⧇ 9 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āĻ¸ā§āĻŦāĻžāĻ­āĻžāĻŦāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞāĻŋāϰ āϘāύ⧇āϰ āϏāĻŽāĻˇā§āϟāĻŋ āĻ•āϤ? [DU : 2000-01]

a. 1600

b. 2025

c. 2500

d. 1225

 

3. āĻ…āϏ⧀āĻŽ āϧāĻžāϰāĻž .6+.06+.006+ ...... āĻāϰ āϝ⧋āĻ—āĻĢāϞ āĻ•āϤ? [DU : 2001-02]

a. 1/3

b. 2/3

c. 4/5

d. 1/6

 

4. 1 + 3/1! + 5/2! + 7/3! + ...... āϧāĻžāϰāĻžāϟāĻŋāϰ āϝ⧋āĻ—āĻĢāϞ- [DU : 2003-04]

a. e

b. 2e

c. 3e

d. 4e

 

5. āĻāĻ•āϟāĻŋ āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āĻĒā§āϰāĻ—āĻŽāύ⧇āϰ āϚāϤ⧁āĻ°ā§āĻĨ āĻĒāĻĻ āĻāĻŦāĻ‚ āύāĻŦāĻŽ āĻĒāĻĻ 2187 āĻšāϞ⧇ āϏāĻžāϧāĻžāϰāĻŖ āĻ…āύ⧁āĻĒāĻžāϤ āĻ•āϤ? [DU : 2003-04]

a. 7

b. 9

c. 3

d. 27

 

6. 1.2+2.3+3.4+...... āϧāĻžāϰāĻžāϟāĻŋāϰ n āϤāĻŽ āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϝ⧋āĻ—āĻĢāϞ- [DU : 2004-05]

a. (1/2)n(n+2)(2n+3)

b. (1/3)n(n+1)(n+2)

c. (1/3)n(n+1)(2n+1)

d. (1/12)n(n+1)(2n+1)

 

7. 0.3+0.003+0.00003+...... āϧāĻžāϰāĻžāϟāĻŋāϰ āĻ…āϏ⧀āĻŽ āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϝ⧋āĻ—āĻĢāϞ- [DU : 2006-07]

a. 10/33

b. 1/3

c. 1/33

d. 33/100

 

8. n āϤāĻŽ āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ 1.2.3+2.3.4+3.4.5+...... āϧāĻžāϰāĻžāϟāĻŋāϰ āϝ⧋āĻ—āĻĢāϞ- [DU : 2009-10]

a. n(n+1)(n+2)(n+3)

b. (n+1)(n+2)(n+3)(n+4)

c. (1/2)n(n+1)(n+2)(n+3)

d. (1/4)n(n+1)(n+2)(n+3)

 

āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻ—āϤ āĻŦāĻ›āϰ⧇āϰ āĻĒā§āϰāĻļā§āĻ¨Â 

1. āĻāĻ–āĻžāύ⧇, a = 1/2; r = -1/2

âˆĩ âˆŖrâˆŖ = 1/2 < 1 ∴ Sn = a/(1-r) = 1/3 [see āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ…āϏ⧀āĻŽāϤāĻ• āϏāĻŽāĻˇā§āϟāĻŋ]

∴ Answer B

 

2. āĻāĻ–āĻžāύ⧇, n = a

∴ $\sum n^{3}=\frac{n(n+1)^{2}}{2}=2025$

∴ Answer B

 

3. āĻāĻ–āĻžāύ⧇, a = .6; r = 0.1

âˆĩ âˆŖrâˆŖ = 0.1 < 1 ∴ Sn = a/(1-r) = 1/6 [see āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ…āϏ⧀āĻŽāϤāĻ• āϏāĻŽāĻˇā§āϟāĻŋ]

∴ Answer D

 

4. āĻāĻ–āĻžāύ⧇, 1 + 3/1! + 5/2! + 7/3! + ......

= 1 + (2+1)/1! + (4+1)/2! + (6+1)/3! + ......

= (1 + 1/1! + 1/2! + 1/3! + ......) + 2/1! + 4/2! + 6/3! + ......

= e + 2(1/1! + 2/2! + 3/3! + ......)

= e + 2{(1 + 2/(2.1!) + 3/(3.2!) + 4/(4.3!) + ......} [âˆĩ n! = n(n-1)!]

= e + 2 (1 + 1/1! + 1/2! + 1/3! + ......)

= e + 2e

= 3e

∴ Answer C

 

5. āϧāϰāĻŋ, āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ a āĻ“ āϏāĻžāϧāĻžāϰāĻŖ āĻ…āύ⧁āĻĒāĻžāϤ r

∴ āϚāϤ⧁āĻ°ā§āĻĨ āĻĒāĻĻ = ar4-1 = 9 ⇒ ar3 = 9...(i) [see āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻžāϰ n āϤāĻŽ āĻĒāĻĻ]

∴ āύāĻŦāĻŽ āĻĒāĻĻ = ar9-1 = 2187 ⇒ ar8 = 2187...(ii)

(ii)/(i) ⇒ r5 = 243 ⇒ r = 3

∴ Answer C

 

6. āĻāĻ–āĻžāύ⧇, Un = n(n+1) [see example 1]

= n2+n

∴ $\mathrm{S}_{\mathrm{n}}=\sum n^{2}+\sum n=(1 / 6) \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)+\frac{\mathrm{n}(\mathrm{n}+1)}{2}$

= $\frac{\mathrm{n}(\mathrm{n}+1)}{2}\{(1 / 3)(2 \mathrm{n}+1)+1\}$

= n(n+1)/2 × (2n+4)/3

= {n(n+1)(n+2)}/3

∴ Answer b

 

7. āĻāĻ–āĻžāύ⧇, a = 0.3; r = 0.01

âˆĩ âˆŖrâˆŖ < 1 ∴ Sn = a/(1-r) = 10/33 [see āϗ⧁āĻŖā§‹āĻ¤ā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ…āϏ⧀āĻŽāϤāĻ• āϏāĻŽāĻˇā§āϟāĻŋ]

∴ Answer a

 

8. āĻāĻ–āĻžāύ⧇, Un = n(n+1)(n+2)

∴ Sn = [{n(n+1)(n+2)(n+3)}/4×1] + C [see example 3 short-cut]

n = 0 āĻšāϞ⧇, 0 = 0+C ⇒ C = 0

∴ Sn = 1/4 {n(n+1)(n+2)(n+3)}

∴ Answer d