āϏāĻžāϧāĻžāϰāĻŖ āĻāĻāύāĻžÂ
- āĻ āύā§āĻā§āϰāĻŽ (Sequence) : āĻ āύā§āĻā§āϰāĻŽ āĻšāϞ⧠āĻāĻāĻāĻŋ āĻĢāĻžāĻāĻļāύ āϝāĻžāϰ āĻĄā§āĻŽā§āύ N āĻāĻŦāĻ āϰā§āĻā§āĻ R āĻāϰ āĻāĻĒāϏā§āĻ āĨ¤ āĻ āύā§āĻā§āϰāĻŽāĻā§ āĻĢāĻžāĻāĻļāύā§āϰ āϰā§āĻā§āĻ āĻĻā§āĻŦāĻžāϰāĻž āύāĻŋāϰā§āĻĻā§āĻļ āĻāϰāĻž āĻšā§ āĨ¤ āϝā§āĻŽāύ :
u : N â S āĻā§āύ⧠āĻĢāĻžāĻāĻļāύ āĻšāϞ⧠(āϝā§āĻāĻžāύ⧠n â N, S â R ) u(n) â S āĻā§ n āĻāϰ āĻĒā§āϰā§āĻā§āώāĻŋāϤ⧠u āĻāϰ āĻĒā§āϰāϤāĻŋāĻā§āĻāĻŦāĻŋ āĻŦāϞāĻž āĻšā§ āĨ¤ āĻāĻā§ un āĻĻā§āĻŦāĻžāϰāĻž āϏā§āĻāĻŋāϤ āĻāϰāĻž āĻšā§ āĨ¤
â´ u āĻāϰ āϰā§āĻā§āĻ : {u1, u2, u3, ......, u n, ......}
â´ u1, u2, u3, ......, un, ...... āĻāĻāĻāĻŋ āĻ āύā§āĻā§āϰāĻŽ āĨ¤
- āϧāĻžāϰāĻž (Series) : āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻžāϰ āĻāĻāĻāĻŋ āĻ āύā§āĻā§āϰāĻŽ u1, u2, u3, ......, un, ...... āĻšāϞ⧠u 1+u2+u3+......+un+...... āĻā§ āĻŦāĻžāϏā§āϤāĻŦ āϏāĻāĻā§āϝāĻžāϰ āĻ āϏā§āĻŽ āϧāĻžāϰāĻž āĻŦāĻž āĻ āύāύā§āϤ āϧāĻžāϰāĻž (Infinite series) āĻŦāϞ⧠āĨ¤ u n āĻšāϞ āĻ āϏā§āĻŽ āϧāĻžāϰāĻžāϰ n āϤāĻŽ āĻĒāĻĻ āĨ¤ āϧāĻžāϰāĻžāϰ āĻĒāĻĻ āϏāĻāĻā§āϝāĻž āύāĻŋāϰā§āĻĻāĻŋāώā§āĻ āĻĨāĻžāĻāϞ⧠āϤāĻžāĻā§ āϏāĻžāύā§āϤ āϧāĻžāϰāĻž (Finite Series) āĻŦāϞ⧠āĨ¤
- āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻž (Arithmetic Series) : āĻāĻāĻāĻŋ āĻāĻāĻāĻŋ āϏāĻžāύā§āϤ āĻŦāĻž āϏāϏā§āĻŽ āϧāĻžāϰāĻž āĨ¤ āϝ⧠āϏāĻžāύā§āϤ āϧāĻžāϰāĻžā§ āϝā§āĻā§āύ⧠āĻĒāĻĻāĻā§ āϤāĻžāϰ āĻĒāϰāĻŦāϰā§āϤ⧠āĻĒāĻĻ āĻĨā§āĻā§ āĻŦāĻŋā§ā§āĻ āĻāϰāϞ⧠āĻāĻāĻ āϏāĻāĻā§āϝāĻž āĻŦāĻž āϰāĻžāĻļāĻŋ āĻĒāĻžāĻā§āĻž āϝāĻžā§, āϤāĻžāĻā§ āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻž āĻŦāϞ⧠āĻāĻŦāĻ āĻ āĻŦāĻŋā§ā§āĻāĻĢāϞāĻā§ āϧāĻžāϰāĻžāϰ āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āϤāϰ āĻŦāϞ⧠āĨ¤ āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āϤāϰ āϧāύāĻžāϤā§āĻŽāĻ āĻŦāĻž āĻāĻŖāĻžāϤā§āĻŽāĻ āĻšāϤ⧠āĻĒāĻžāϰ⧠āĨ¤
āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ a āĻāĻŦāĻ āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āϤāϰ d āĻšāϞā§,
n āϤāĻŽ āĻĒāĻĻ = a + (n-1)d
āĻĒā§āϰāĻĨāĻŽ n āϏāĻāĻā§āϝāĻ āĻĒāĻĻā§āϰ āϏāĻŽāώā§āĻāĻŋ, Sn = (n/2){2a+(n-1)d}
āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻž (Geometric Series) : āϝ⧠āϧāĻžāϰāĻžā§ āĻā§āύ⧠āĻĒāĻĻā§āϰ āϏāĻžāĻĨā§ āϤāĻžāϰ āĻĒāϰāĻŦāϰā§āϤ⧠āĻĒāĻĻā§āϰ āĻ āύā§āĻĒāĻžāϤ āϏāĻŦ āϏāĻŽā§ āϏāĻŽāĻžāύ āĻšā§ āϤāĻžāĻā§ āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻž āĻŦāϞ⧠āĨ¤ āϝā§āĻŽāύ : a+ar+ar 2+......+arn-1 āĻāĻāĻāĻŋ āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻž āĨ¤
āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ a āĻāĻŦāĻ āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āĻĒāĻžāϤ r āĻšāϞā§,
n āϤāĻŽ āĻĒāĻĻ = arn-1
āĻĒā§āϰāĻĨāĻŽ n āϏāĻāĻā§āϝāĻ āĻĒāĻĻā§āϰ āϏāĻŽāώā§āĻāĻŋ, Sn = a{(rn-1)/(r-1)} āϝāĻāύ r>1
= a{(1-rn)/(1-r)} āϝāĻāύ r<1
āĻāĻŦāĻžāϰ, āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻĒāĻĻāϏāĻāĻā§āϝāĻž āĻ āϏā§āĻŽ āĻāĻŦāĻ âŖrâŖ<1 (āĻ āϰā§āĻĨāĻžā§ -1<r<1) āĻšāϞā§,
āϧāĻžāϰāĻžāĻāĻŋāϰ āĻ āϏā§āĻŽāϤāĻ āϏāĻŽāώā§āĻāĻŋ (sum up to infinity), SÎą = a/(1-r)
- āĻĒā§āϰāĻĨāĻŽ n āϏāĻāĻā§āϝāĻ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ : $\sum n=\{\mathrm{n}(\mathrm{n}+1)\} / 2$
- āĻĒā§āϰāĻĨāĻŽ n āϏāĻāĻā§āϝāĻ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻā§āϰ āϝā§āĻāĻĢāϞ : $\sum n^{2}=(1 / 6) \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)$
- āĻĒā§āϰāĻĨāĻŽ n āϏāĻāĻā§āϝāĻ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻāύā§āϰ āϝā§āĻāĻĢāϞ : $\sum n^{3}=\left\{\frac{n(n+1)^{2}}{2}\right\}^{2}$
- āĻĒā§āϰāĻĨāĻŽ n āϏāĻāĻā§āϝāĻ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āĻŦāĻŋāĻā§ā§ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ : $\sum 2 n-1=\mathrm{n}^{2}$
- āĻĒā§āϰāĻĨāĻŽ n āϏāĻāĻā§āϝāĻ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āĻā§ā§ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ : $\sum 2 n$ = n(n+1)
Â
āĻāĻžāĻŖāĻŋāϤāĻŋāĻ āϏāĻŽāϏā§āϝāĻžāϰ āĻāĻĻāĻžāĻšāϰāĻŖ āĻ āϏāĻŽāĻžāϧāĻžāύÂ
Â
1. n āϏāĻāĻā§āϝāĻ āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰ : 1.2+2.5+3.8+.........
āĻĒā§āϰāĻĻāϤā§āϤ āϧāĻžāϰāĻžāĻāĻŋāϰ āĻĒāĻĻāĻā§āϞ⧠āĻĻā§āĻāĻŋ āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻā§āĻŖāĻĢāϞ āϰā§āĻĒā§ āĻĒā§āϰāĻāĻžāĻļāĻŋāϤ āϝāĻžāϰ āĻāĻāĻāĻŋ āĻšāϞ : 1+2+3+.........
â´ n āϤāĻŽ āĻĒāĻĻ = 1+(n-1)1 [see āϏāĻŽāĻžāύā§āϤāϰ āϧāĻžāϰāĻž]
= n
â´ āĻĒā§āϰāĻĻāϤā§āϤ āϧāĻžāϰāĻžāϰ āϏāĻžāϧāĻžāϰāĻŖ āĻĒāĻĻ, un = n(3n-1) = 3n2-n
â´ āĻĒā§āϰāĻĻāϤā§āϤ āϧāĻžāϰāĻžāϰ n āϤāĻŽ āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ āϝā§āĻāĻĢāϞ,
$\mathrm{S}_{\mathrm{n}}=3 \sum n^{2}-\sum n$
= 3(1/6)n(n+1)(2n+1) â {n(n+1)}/2 [see n āϏāĻāĻā§āϝāĻ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āϝā§āĻāĻĢāϞ āĻ n āϏāĻāĻā§āϝāĻ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻā§āϰ āϝā§āĻāĻĢāϞ]
= {n(N+1)(2n+1)}/2 â {n(n+1)}/2
= ÂŊ n(n+1)(2n+1-1)
= n2(n+1)
[āϞāĻā§āώāĻŖā§ā§, āϏāϰā§āĻŦā§āĻā§āĻ āϤāĻŋāύāĻāĻŋ āĻĒāĻĻā§āϰ āĻā§āĻŖāĻĢāϞ āϰā§āĻĒā§ āĻĒā§āϰāĻāĻžāĻļāĻŋāϤ āϧāĻžāϰāĻžāϰ āϝā§āĻāĻĢāϞ āĻāĻ āĻĒā§āϰāĻā§āϰāĻŋā§āĻžā§ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻž āϝāĻžā§]
Â
2. āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰ : 22+42+62 +.........+(2n)2
āĻāĻāύ, 22+42+62+.........+(2n)2
= 2212+2222+223 2+.........+22n2
= 22(12+22+32+.........+n 2)
= 4(1/6)n(n+1)(2n+1) [see n āϏāĻāĻā§āϝāĻ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāϰ āĻŦāϰā§āĻā§āϰ āϝā§āĻāĻĢāϞ]
= (2/3)n(n+1)(2n+1)
3. n āϤāĻŽ āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰ : 1.4.7+4.7.10+7.10.13+.........
āĻāĻāĻžāύā§, un = (3n-2)(3n+1)(3n+4)...(i) [see examole 1]
â´ un+1 = (3n+1)((3n+4)(3n+7)...(ii)
(i)/(ii) â un/(un+1) = (3n-2)/(3n+7)
â (3n+7)un = (3n-2)un+1 ...(iii)
āϧāϰāĻŋ, vn = (3n+7)un ...(iv)
â´ vn+1 = (3n+10)un+1 ...(v)
â´ (v)-(vi) â vn+1 - vn = (3n+10)un+1 â (3n+7) un
= (3n+10)un+1 â(3n-2)un+1 [(iii) āĻ āύā§āϏāĻžāϰā§]
= 12un+1
â´ un+1 = (1/12)(vn+1 - vn)...(vi)
(vi) āĻ n = 1,2,3...... āĻŦāϏāĻŋā§ā§ āĻĒāĻžāĻ,
u1 = (1/12)(v1-v0)
u2 = (1/12)(v2-v1)
... ... ... ... ...
... ... ... ... ...
un = (1/12)(vn-vn-1)
_____________________________
(+) āĻāϰā§, Sn = u1+u2+u3+......+u n = (1/12)(vn-v0)
(iv) āĻ n = 0 āĻŦāϏāĻŋā§ā§ āĻĒāĻžāĻ, v0 = 37.u0
= -56 [(i) āĻĨā§āĻā§ āĻāϰ āĻŽāĻžāύ āĻŦāϏāĻŋā§ā§]
â´ Sn = (1/12)(vn-v0)
= (1/12)(3n+7)un + (56/12)
= (14/3) + (1/12)(3n-2)(3n+1)(3n+4)(3n+7)
āĻļāϰā§āĻāĻāĻžāϰā§āĻ : āĻā§āύ⧠āϧāĻžāϰāĻžāϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻĒāĻĻ āϏāĻŽāĻžāύā§āϤāϰ āĻļā§āϰā§āĻŖāĻŋāĻā§āĻā§āϤ āĻšāϞ⧠āĻ āϰā§āĻĨāĻžā§ āϏāĻžāϧāĻžāϰāĻŖ āĻĒāĻĻā§āϰ āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻā§āĻĒāĻžāĻĻāĻā§āϰ āĻ āύā§āϤāϰ āĻāĻāĻ āĻšāϞ⧠āĻāĻŦāĻ âāĻā§āĻĒāĻžāĻĻāĻā§āϞā§āϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰ āĻļā§āϰā§āĻŖāĻŋāĻā§āĻā§āϤ āĻšāϞ⧠āύāĻŋāĻŽā§āύā§āĻā§āϤ āϏā§āϤā§āϰ āĻĒā§āϰā§ā§āĻ āĻāϰ⧠āϏāĻšāĻā§āĻ āϧāĻžāϰāĻžāϰ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰāĻž āϝāĻžā§ āĨ¤
Sn = {(āĻāĻāĻ āϏāĻŽāĻžāύā§āϤāϰ āĻĒā§āϰāĻāĻŽāύā§āϰ āĻāĻāĻāĻŋ āĻ āϤāĻŋāϰāĻŋāĻā§āϤ āĻā§āĻĒāĻžāĻĻāĻ)/(āĻ āϤāĻŋāϰāĻŋāĻā§āϤ āĻā§āĻĒāĻžāĻĻāύ āϏāĻš āĻŽā§āĻ āĻā§āĻĒāĻžāĻĻāĻ āϏāĻāĻā§āϝāĻž à āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āϤāϰ)} + āϧā§āϰā§āĻŦāĻ C
āĻāϞā§āĻā§āϝ āĻĒā§āϰāĻļā§āύ⧠āĻĒā§āϰāĻĻāϤā§āϤ āϧāĻžāϰāĻžāϰ Un = (3n-2)(3n+1)(3n+4)
āĻāĻāĻžāύā§, (3n-1)-(3n-2) = (3n+4)-(3n+1) = 3 = āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āϤāϰ
āĻĒā§āϰāϤāĻŋāĻāĻŋ āĻā§āĻĒāĻžāĻĻāĻā§āϰ āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ = 3n
â´ Sn = {(3n-2)(3n+1)(3n+4)(3n+7)}/(4Ã3) + C
C āĻāϰ āĻŽāĻžāύ āύāĻŋāϰā§āĻŖā§ā§āϰ āĻāύā§āϝ n = 1 āĻŦāϏāĻŋā§ā§ Sn = S1 = U 1 āĻĨā§āĻā§ āĻ āĻĨāĻŦāĻž n = 0 āĻŦāϏāĻŋā§ā§ Sn = S0 = 0 āĻĨā§āĻā§ āĻŦā§āϰ āĻāϰāϤ⧠āĻšāĻŦā§ āĨ¤
āĻāĻā§āώā§āϤā§āϰā§, n = 0 āĻŦāϏāĻŋā§ā§ āĻĒāĻžāĻ, 0 = -(56/12) + C
â C = 14/3
â´ Sn = (14/3) + (1/12)(3n-2)(3n+1)(3n+4)(3n+7)
āĻāĻāĻ āĻĒā§āϰāĻā§āϰāĻŋā§āĻžā§ āĻāĻā§āύāĻžāĻāĻļ āϰā§āĻĒā§āϰ āϧāĻžāϰāĻžāϰ āϏāĻŽāώā§āĻāĻŋ āύāĻŋāϰā§āĻŖā§ā§āϰ āĻā§āώā§āϤā§āϰā§,
Sn = āϧā§āϰā§āĻŦāĻ C â 1/{(āĻāϰ āĻĒā§āϰāĻĨāĻŽ āĻā§āĻĒāĻžāĻĻāĻ āĻŦāĻžāĻĻā§ āĻ āύā§āϝāĻā§āϞā§) à āĻā§āĻĒāĻžāĻĻāĻ āϏāĻāĻā§āϝāĻž à āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āϤāϰ}
[āĻāĻžāϞā§āĻāĻžāĻŦā§ āĻŦā§āĻāϤ⧠Example 4 āĻĻā§āĻā§āύ]
Â
4. n āϤāĻŽ āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ āϝā§āĻāĻĢāϞ āύāĻŋāϰā§āĻŖā§ āĻāϰ : 1/(1.2.3) + 1/(2.3.4) + 1/(3.4.5) + .........
āĻāĻāĻžāύā§, un = 1/{n(n+1)(n+2)} [see example 1 for details]
â´ Sn = C â 1/{(n+1)(n+2)Ã2Ã1} [see example 3 short-cut]
n = 0 āĻŦāϏāĻŋā§ā§ āĻĒāĻžāĻ, 0 = C-(1/4)
â C = (1/4)
â´ Sn = 1/4 â 1/{2(n+1)(n+2)}
5. 7+77+777+......... āϧāĻžāϰāĻžāĻāĻŋāϰ n āϏāĻāĻā§āϝāĻ āĻĒāĻĻā§āϰ āϏāĻŽāώā§āĻāĻŋ āύāĻŋāϰā§āĻŖā§ āĻāϰ āĨ¤
āϧāϰāĻŋ, S = 7+77+777+...... n āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ
â S/7 = 1+11+111+...... n āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ
â 9S/7 = 9+99+999+...... n āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ
= (10-1)+(100-1)+(1000-1)+...... n āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ
= (10+102+103+......+10n)-(1+1+1+......+1) n āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ
= 10(1+10+102+......+10n)-n [
= n]
= 10{(10n-1)/(10-1)}-n [see āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻžāϰ n āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ āϏāĻŽāώā§āĻāĻŋ]
= (10/9)(10n-1)-n
â´ S = 7/9{(10/9)(10n-1)-n}
āĻļāϰā§āĻāĻāĻžāϰā§āĻ :
a+aa+aaa+...... āϧāĻžāϰāĻžāĻāĻŋāϰ n āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ āϏāĻŽāώā§āĻāĻŋ,
Sn = (a/9){(10/9)(10n-1)-n}
Â
6. 3/21 + 9/21 + 27/21 + 81/21 + .........āĻāϰ āĻŽāĻžāύ āĻāϤ?
āĻāĻāĻžāύā§, 3/21 + 9/21 + 27/21 + 81/21 + .........
= 1 + 3/21 + 9/21 + 27/21 + 81/21 + ......... â 1
= c3-1 [see āĻĻā§āĻŦāĻŋāĻĒāĻĻā§ āĻāĻĒāĻĒāĻžāĻĻā§āϝ- some important series to remember viii ]
Â
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ āĻ āϏāĻŽāĻžāϧāĻžāύÂ
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύ :
1. 1/2 + (-1/4) + 1/8 + (-1/16) + ...... āϧāĻžāϰāĻžāϰ āĻ āϏā§āĻŽ āĻĒāϰā§āϝāύā§āϤ āĻŽāĻžāύ āĻāϤ? [DU : 2000-01]
a. 1/4
b. 1/3
c. 1/2
d. 1/8
Â
2. 1 āĻĨā§āĻā§ 9 āĻĒāϰā§āϝāύā§āϤ āϏā§āĻŦāĻžāĻāĻžāĻŦāĻŋāĻ āϏāĻāĻā§āϝāĻžāĻā§āϞāĻŋāϰ āĻāύā§āϰ āϏāĻŽāώā§āĻāĻŋ āĻāϤ? [DU : 2000-01]
a. 1600
b. 2025
c. 2500
d. 1225
Â
3. āĻ āϏā§āĻŽ āϧāĻžāϰāĻž .6+.06+.006+ ...... āĻāϰ āϝā§āĻāĻĢāϞ āĻāϤ? [DU : 2001-02]
a. 1/3
b. 2/3
c. 4/5
d. 1/6
Â
4. 1 + 3/1! + 5/2! + 7/3! + ...... āϧāĻžāϰāĻžāĻāĻŋāϰ āϝā§āĻāĻĢāϞ- [DU : 2003-04]
a. e
b. 2e
c. 3e
d. 4e
Â
5. āĻāĻāĻāĻŋ āĻā§āĻŖā§āϤā§āϤāϰ āĻĒā§āϰāĻāĻŽāύā§āϰ āĻāϤā§āϰā§āĻĨ āĻĒāĻĻ āĻāĻŦāĻ āύāĻŦāĻŽ āĻĒāĻĻ 2187 āĻšāϞ⧠āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āĻĒāĻžāϤ āĻāϤ? [DU : 2003-04]
a. 7
b. 9
c. 3
d. 27
Â
6. 1.2+2.3+3.4+...... āϧāĻžāϰāĻžāĻāĻŋāϰ n āϤāĻŽ āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ āϝā§āĻāĻĢāϞ- [DU : 2004-05]
a. (1/2)n(n+2)(2n+3)
b. (1/3)n(n+1)(n+2)
c. (1/3)n(n+1)(2n+1)
d. (1/12)n(n+1)(2n+1)
Â
7. 0.3+0.003+0.00003+...... āϧāĻžāϰāĻžāĻāĻŋāϰ āĻ āϏā§āĻŽ āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ āϝā§āĻāĻĢāϞ- [DU : 2006-07]
a. 10/33
b. 1/3
c. 1/33
d. 33/100
Â
8. n āϤāĻŽ āĻĒāĻĻ āĻĒāϰā§āϝāύā§āϤ 1.2.3+2.3.4+3.4.5+...... āϧāĻžāϰāĻžāĻāĻŋāϰ āϝā§āĻāĻĢāϞ- [DU : 2009-10]
a. n(n+1)(n+2)(n+3)
b. (n+1)(n+2)(n+3)(n+4)
c. (1/2)n(n+1)(n+2)(n+3)
d. (1/4)n(n+1)(n+2)(n+3)
Â
āĻĸāĻžāĻŦāĻŋāϰ āĻŦāĻŋāĻāϤ āĻŦāĻāϰā§āϰ āĻĒā§āϰāĻļā§āύÂ
1. āĻāĻāĻžāύā§, a = 1/2; r = -1/2
âĩ âŖrâŖ = 1/2 < 1 â´ Sn = a/(1-r) = 1/3 [see āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ āϏā§āĻŽāϤāĻ āϏāĻŽāώā§āĻāĻŋ]
â´ Answer B
Â
2. āĻāĻāĻžāύā§, n = a
â´Â $\sum n^{3}=\frac{n(n+1)^{2}}{2}=2025$
â´ Answer B
Â
3. āĻāĻāĻžāύā§, a = .6; r = 0.1
âĩ âŖrâŖ = 0.1 < 1 â´ Sn = a/(1-r) = 1/6 [see āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ āϏā§āĻŽāϤāĻ āϏāĻŽāώā§āĻāĻŋ]
â´ Answer D
Â
4. āĻāĻāĻžāύā§, 1 + 3/1! + 5/2! + 7/3! + ......
= 1 + (2+1)/1! + (4+1)/2! + (6+1)/3! + ......
= (1 + 1/1! + 1/2! + 1/3! + ......) + 2/1! + 4/2! + 6/3! + ......
= e + 2(1/1! + 2/2! + 3/3! + ......)
= e + 2{(1 + 2/(2.1!) + 3/(3.2!) + 4/(4.3!) + ......} [âĩ n! = n(n-1)!]
= e + 2 (1 + 1/1! + 1/2! + 1/3! + ......)
= e + 2e
= 3e
â´ Answer C
Â
5. āϧāϰāĻŋ, āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ a āĻ āϏāĻžāϧāĻžāϰāĻŖ āĻ āύā§āĻĒāĻžāϤ r
â´ āĻāϤā§āϰā§āĻĨ āĻĒāĻĻ = ar4-1 = 9 â ar3 = 9...(i) [see āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻžāϰ n āϤāĻŽ āĻĒāĻĻ]
â´ āύāĻŦāĻŽ āĻĒāĻĻ = ar9-1 = 2187 â ar8 = 2187...(ii)
(ii)/(i) â r5 = 243 â r = 3
â´ Answer C
Â
6. āĻāĻāĻžāύā§, Un = n(n+1) [see example 1]
= n2+n
â´Â $\mathrm{S}_{\mathrm{n}}=\sum n^{2}+\sum n=(1 / 6) \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)+\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
=Â $\frac{\mathrm{n}(\mathrm{n}+1)}{2}\{(1 / 3)(2 \mathrm{n}+1)+1\}$
= n(n+1)/2 Ã (2n+4)/3
= {n(n+1)(n+2)}/3
â´ Answer b
Â
7. āĻāĻāĻžāύā§, a = 0.3; r = 0.01
âĩ âŖrâŖ < 1 â´ Sn = a/(1-r) = 10/33 [see āĻā§āĻŖā§āϤā§āϤāϰ āϧāĻžāϰāĻžāϰ āĻ āϏā§āĻŽāϤāĻ āϏāĻŽāώā§āĻāĻŋ]
â´ Answer a
Â
8. āĻāĻāĻžāύā§, Un = n(n+1)(n+2)
â´ Sn = [{n(n+1)(n+2)(n+3)}/4Ã1] + C [see example 3 short-cut]
n = 0 āĻšāϞā§, 0 = 0+C â C = 0
â´ Sn = 1/4 {n(n+1)(n+2)(n+3)}
â´ Answer d